

SOLUTION MAGICAL MATHS

Chapter 1 : Integers

Exercise 1.1

1.	Find the absolute valu	le of :	
	(i) –19	Absolute value of -19	= -19 = 19
	(ii) -105	Absolute value of -105	5 = -105 = 105
	(iii) 30	Absolute value of $30 =$	30 = 30
2.	Arrange in ascending	order :	
		-73, 105, 30, -21, 45	
	Ascending order =	-73, -21, 30, 45, 105	
3.	Arrange in descending	; order :	
		-108, 0, -50, 15, -95	
	Descending order =	15, 0, - 50, - 95, - 108	
4.	Simplify :		
	(i) $(-65) + (-18)$	(ii) $50 + (-30)$	(iii) $6 - (-3 + 8)$
	= -65 - 18	= 50 - 30	= 6 - (5)
-	= -83	= 20	= 6 - 5 = 1
5.	Add the following :		
	(i) $300 + (-78) + (-22)$	(ii) 150 – (–148	
	= 300 - 78 - 22	= 150 + 148 + 100	+ 2
	= 222 - 22	= 298 + 2	
	= 200	= 300	
	(iii) -392 + (-5) + (-8) + (
		-5 - 8 + 506	
		-8 + 506	
_	100	+506 = 101	
6.	Use the sign of $<$, $>$ or		
	(i) $(-8) + 4 \leq (-6)$		$(-3) + 15 \gtrsim (-1) + 12$
	-8+4 $-6+-4$ < 0	- 0	-3+15 -1+12 12 > 11
	-4 < 0		14 - 11

= (iv) (-7) - (-1)|<|(-10)-(-10)|(iii) (-9) - (-1)(-2) + (-6)-9 + 1-2 - 6-7 + 1-10 + 10-8-8-60 = < Subtract : 7. (ii) $-600 \, \text{from} - 210$ (i) 1000 from 925 = 925 - 1000= -210 - (-600)= -75= -210 + 600= 390(iii) 40 from -30 = -30 - 40= -70Sum of two integers = -728. One of them = -43Other integer = ?(-43) + x = -72x = -72 + 43x = -29Hence, other integer is -29. 9. Write down a pair of integers whose : (i) sum is 0(ii) sum is (-3)pair is \rightarrow (-5, 5) Pair is \rightarrow (-8+5) *.*.. -5 + 5 = 0÷ -8 + 5 = -3(iii) Difference is (-6)Pair is \rightarrow (-12, -6) -12 - (-6) = -12 + 6 = -6*.*.. **10.** Sum of -105 and 225 = -105 + 225= 120Now, subtract 120 from -165 = -165 - 120= -28511. Distance travelled by car to the East = +70 kmDistance travelled by car to the West = -140 kmFinal distance = 70 + (-140) $= -70 \, \text{km}$ 12. Position of submarine below the see level = -1050 mit descends = -300 mIts new position = -1050 + (-300)*.*.. $= -1350 \,\mathrm{m}$ **13.** Temperature on Saturday = -1° C It rose on Sunday = 3° C Now the temperature on Sunday = $-1^{\circ}C + 3^{\circ}C$ *.*.. $= 2^{\circ} C$

Exercise 1.2

Find the product : 1. (i) $(-14) \times 5$ (ii) $(-25) \times 10$ = -70= -250(iii) $(-5) \times (-15)$ (iv) $(-5) \times (-10) \times 6$ = 75= 3002. Find each of the following products : (i) $(-12) \times (-5) \times 5 \times (-1)$ (ii) $(-2) \times 36 \times (-5) \times (-10)$ $= 60 \times (-5)$ $= -72 \times 50$ = -3600= -300(iii) $(-100) \times 11 \times 0 \times 6$ (iv) $(-11) \times (-11) \times (-11)$ $= -1100 \times 0$ $= 121 \times (-11)$ = 0= -1331Find the value using suitable properties : 3. $52 \times (-98) + 52 \times (-2)$ (i) $= 52 \times [-98 + (-2)]$ (by distributive property) $= 52 \times (-98 - 2)$ $= 52 \times (-100)$ = -5200(ii) $4257 \times 125 + 4257 \times (-25)$ $= 4257 \times [125 + (-25)]$ (by distributive property) $= 4257 \times [125 - 25]$ $= 4257 \times 100$ = 425700(iii) $872 \times 1001 - 872$ $= 872 \times [1001 - 1]$ (by distributive property) $= 872 \times 1000$ = 872000(iv) -36×103 $= -36 \times [100 + 3]$ (by distributive property) $= -36 \times 100 + (-36) \times 3$ = -3600 - 108= -3708**4.** Verify the following : (i) $15 \times [12 + (-2)] = 15 \times 12 + 15 \times (-2)$ $15 \times [12 - 2] = 180 + (-30)$ 15×10 = 180 - 30150= 150LHS = RHS

(ii) $-12 \times [(-7) - (-3)] = (-12) \times (-7) - (-12) \times (-3)$ $-12 \times [-7 + 3] = 84 - 36$ $-12 \times (-4)$ = 48 48 = 48LHS = RHSDetermine the integers whose product with (-1) is : 5. (i) 48 (ii) -12 (iii) 275 Integer = -48Integer = 12Integer = -275 $(-48) \times (-1) = 48$ $\therefore \quad 12 \times (-1) = -12$ \therefore (-275) × (-1) = 275 ... 6. Total no. of questions = 50Marks of every correct answer = 5Marks of incorrect answer = -3Saurabh attempted questions = 50(i) No. of of correct answers = 45then no. of incorrect answers = (50 - 45)= 5His total score = $(45 \times 5) + [5 \times (-3)]$ = 225 - 15= 210(ii) Deepak attempted questions = 35No. of correct answers = 30No. of incorrect answers = 5His score = $(30 \times 5) + [5 \times (-3)]$ = 150 - 15= 135Present temperature = 36° C 7. It decreases every hour = 4° C Then the temperature after 10 hours $= 36^{\circ} \text{C} + (-4 \times 10)^{\circ} \text{C}$ $= 36^{\circ} \text{C} - 40^{\circ} \text{C}$ $= -4^{\circ} C$ **Exercise 1.3** Find the quotient : 1. (i) $144 \div (-12)$ (ii) $(-391) \div (-17)$ (iii) $234 \div (-1)$ $=\frac{144}{-12}$ $=\frac{-391}{-17}$ $=\frac{234}{-1}$ = -12= 23= -234

(iv) (-81) ÷ 81	$(v) (-576) \div 16$	(vi) 0 ÷ (-15)
$=\frac{-81}{}$	$=\frac{-576}{}$	=
81	16	-15
= -1	= -36	= 0

2. Fill in the blanks :

(i)
$$12 \div \dots = -6$$
(ii) $\dots \div (-3) = 18$ (iii) $\dots \div (-12) = 0$ $12 \div (-2) = -6$ $(-54) \div (-3) = 18$ $0 \div (-12) = 0$ (iv) $(-98) \div \dots = 14$ (v) $275 \div \dots = 1$ (vi) $(-512) \div 8 = \dots$ $(-98) \div (-7) = 14$ $275 \div 275 = 1$ $(-512) \div 8 = -64$

- **3.** Points for every correct answer = 10 Points for every incorrect answer = 5
 - (i) The team from St. Joseph School scored points = 125
 No. of correct answers attempted by the team = 15
 - $\therefore \text{ No. of incorrect answers} = \frac{(15 \times 10) 125}{5}$ $= \frac{150 125}{5}$ $= \frac{25}{5} = 5$
 - (ii) No. of correct answers attempted by the team Indian Public School = 10
 No. of Incorrect answers attempted by the team Indian Public School = 5
 - $\therefore \quad \text{Their score} = (10 \times 10) + 5 \times (-5)$

$$= 100 - 25 = 75$$

(iii) No. of points scored by the team Government Girls school = 150No. of correct answers attempted by the team = 18

$$\therefore \text{ No. of incorrect answers} = \frac{(18 \times 10) - 150}{5}$$
$$= \frac{180 - 150}{5}$$

$$=\frac{30}{5}=6$$

Now, no. of points scored by St. Joseph School = 125

No. of points scored by Indian Public School = 75

No. of points scored by Government Girls School = 150

Hence, the team from Government Girls school won the competition.

- 4. Which of the following sttements are true and which are false :
 - (i) $0 \div 4 = 4$ (ii) $(-15) \div 0 = 0$

LHS = $0 \div 4$	LHS = $\frac{-15}{0}$
$=\frac{0}{4}$	= not defined
$= 0 \neq RHS$	≠RHS
(False)	(False)

(iii) $(-8) \div (-1) = 8$ (iv) $0 \div 0 = 0$ $LHS = \frac{0}{0} = Note defined$ $LHS = (-8) \div (-1)$ $=\frac{-8}{-1}=8$ $\neq \mathrm{RHS}$ = RHS(False) (True) (vi) True (vii) True

(v) True

Exercise 1.4

Simplify : 1.

2.

(i)
$$18 + [12 \div (-2)]$$

 $= 18 + (-6)$
 $= 18 - 6$
 $= 12$
(iii) $17 - [3 + 2 - \{(4 + \sqrt{2 - 3})\}]$
 $= 17 - [5 - (4 + 9)]$
 $= 17 - [5 - 13]$
 $= 17 - (-8) = 17 + 8 = 25$
(v) $10 - \{13 - 5(4 \text{ of } -4)\}$
 $= 10 - \{13 - 5(4 \times - 4)\}$
 $= 10 - \{13 - 5 \times (-16)\}$
 $= 10 - \{13 + 80\}$
 $= 10 - 93$
 $= -83$
Solve the following :

(i)
$$27 - [5 + \{28 - (29 - 7)\}]$$

= $27 - [5 + \{28 - 22\}]$
= $27 - [5 + 6]$
= $27 - 11 = 16$

(iii)
$$\{48 \div (-6)\} \div [(-24) \div \{(-24) \div (-8)\}]$$

= $(-8) \div [(-24) \div (3)]$
= $(-8) \div (-8)$
= 1
(iv) $15 - (-3)\{4 - \overline{7 - 3}\} \div 3 \div [\{-15 + (-3) \times (-6)\}]$
= $15 - (-3)\{4 - 4\} \div 3 \div [\{-15 + 18\}]$

 $= 15 - 0 \div 1$ $= 15 \div 0 = 15$

 $= 15 - (-3) \times 0 \div 3 \div (3)$

(ii)
$$7 + (8 - 3 + 2)$$

= $7 + (10 - 3)$
= $7 + 7$
= 14
(iv) $25 - [25 - \{25 - (25 - \overline{25 - 25})]$
= $25 - [25 - \{25 - 25 - 0)\}]$
= $25 - [25 - \{25 - 25\}]$
= $25 - [25 - 0]$
= $25 - 25 = 0$

(ii)
$$17 - [3 \div \{18 - 19 - 2\}] \div \{1 \div (5 - 3 - 1)\}$$

= $17 - [3 \div \{18 - 21\}]$
 $\div \{1 \div (5 - 4)\}$
= $17 - [3 \div (-3)] \div \{1 \div 1\}$
= $17 - (-1) \div 1$
= $17 + 1 \div 1$
= $18 \div 1 = 18$

(v) 81 of
$$[59 - (2 \times 7) + (15 - 2 \text{ of } 5)]$$

$$= 81 \times [59 - 14 + (15 - 2 \times 5)]$$

$$= 81 \times [59 - 14 + (15 - 10)]$$

$$= 81 \times [59 - 14 + 5]$$

$$= 81 \times [45 + 5]$$

$$= 81 \times 50 = 4050$$
(vi) $8 + \frac{1}{5} [\{-10 \times (25 - 18 - 3)\} \div (-5)]$

$$= 8 + \frac{1}{5} [\{-10 \times (25 - 21)\} \div (-5)]$$

$$= 8 + \frac{1}{5} [\{-10 \times 4\} \div (-5)]$$

$$= 8 + \frac{1}{5} [-40 \div (-5)]$$

$$= 8 + \frac{1}{5} \times 8$$

$$= \frac{8}{1} + \frac{8}{5} = \frac{40 + 8}{5} = \frac{48}{5} = 9\frac{3}{5}$$

Chapter 2 : Fractions

Exercise 2.1

1.	Write an equivalent fract	ion for each :	
	(i) $\frac{3}{6}$	(ii) $\frac{7}{9}$	(iii) $\frac{5}{9}$
		-	e
	$=\frac{3\times 2}{6\times 2}=\frac{6}{12}$	$=\frac{7\times2}{9\times2}=\frac{14}{18}$	$=\frac{5\times2}{9\times2}=\frac{10}{18}$
2.	Compare the fractions :		
	(i) $\frac{5}{3} \ge \frac{6}{8}$	(ii) $\frac{3}{4} \leq \frac{7}{9}$	
	$\frac{5}{3}$ \times $\frac{6}{8}$	$\frac{3}{4} \times \frac{7}{9}$	
	$8 \times 5 6 \times 3$	$3 \times 9 7 \times 4$	
	40 > 18	27 < 28	
	(iii) $\frac{1}{3} \ge \frac{2}{7}$	$(iv) \frac{18}{12} \le \frac{19}{2}$	
	$\frac{1}{3} \times \frac{2}{7}$	$\frac{18}{12} \times \frac{19}{2}$	
	1×7 2×3	18×2 19×12	
	7 > 6	36 < 228	
3.	Evaluate :	4 1	3 1
	(i) $\frac{4}{1} + \frac{7}{8}$	(ii) $8\frac{4}{15} - 5\frac{1}{5}$	(iii) $3\frac{3}{4} + 5\frac{1}{2}$
	$=\frac{32+7}{8}$	$=\frac{124}{15}-\frac{26}{5}$	$=\frac{15}{4}+\frac{11}{2}$
	$=\frac{39}{8}$	$=\frac{124-78}{15}$	$=\frac{15+22}{4}$
	$=4\frac{7}{8}$	$=\frac{46}{15}=3\frac{1}{15}$	$=\frac{37}{4}=9\frac{1}{4}$
		•	

$$\begin{aligned} \text{(iv)} \quad \frac{8}{9} + \frac{3}{2} + \frac{5}{6} & \text{(v)} \quad 1\frac{7}{8} - 1\frac{1}{4} + 1\frac{1}{2} & \text{(vi)} \quad 2\frac{3}{4} - 1\frac{1}{3} + 3\frac{2}{5} \\ &= \frac{16 + 27 + 15}{18} & = \frac{15}{8} - \frac{5}{4} + \frac{3}{2} & = \frac{11}{4} - \frac{4}{3} + \frac{17}{5} \\ &= \frac{58}{18} = \frac{29}{9} & = \frac{15 - 10 + 12}{8} & = \frac{165 - 80 + 204}{60} \\ &= 3\frac{2}{9} & = \frac{5 + 12}{8} = \frac{17}{8} = 2\frac{1}{8} & = \frac{85 + 204}{60} \\ &= \frac{289}{60} = 4\frac{49}{60} \end{aligned}$$

4. (i) Arrange the following in ascending order :

(i)
$$\frac{1}{2}$$
, $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{10}$
LCM of 2, 6, 3 and 10 = 30
Now, $\frac{1}{2} = \frac{1 \times 15}{2 \times 15} = \frac{15}{30}$
 $\frac{1}{6} = \frac{1 \times 5}{6 \times 5} = \frac{5}{30}$
 $\frac{1}{3} = \frac{1 \times 10}{3 \times 10} = \frac{10}{30}$
 $\frac{1}{10} = \frac{1 \times 3}{10 \times 3} = \frac{3}{30}$

Ascending Order

:..

3	< <u>5</u> <	< 10 <	15
$\overline{30}$	$\overline{30}$	$\overline{30}$	30
1	1	$\frac{1}{-} < \frac{1}{-}$	
$\frac{10}{10}$	$\frac{-}{6} < -$	$\frac{-}{3} < \frac{-}{2}$	

5. Arrange the following in descending order :

(i) $\frac{1}{5}, \frac{3}{7}, \frac{7}{10}, \frac{4}{5}$	(ii) $\frac{2}{3}, \frac{3}{4}, \frac{1}{2}, \frac{5}{6}$
\therefore LCM of 5, 7, 10 and 5 = 70	\therefore LCM of 3, 4, 2 and 6 = 12
Now,	Now,
$\frac{1}{5} = \frac{1 \times 14}{5 \times 14} = \frac{14}{70}$	$\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$
$\frac{3}{7} = \frac{3 \times 10}{7 \times 10} = \frac{30}{70}$	$\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$
$\frac{7}{10} = \frac{7 \times 7}{10 \times 7} = \frac{49}{70}$	$\frac{1}{2} = \frac{1 \times 6}{2 \times 6} = \frac{6}{12}$
$\frac{4}{5} = \frac{4 \times 14}{5 \times 14} = \frac{56}{70}$	$\frac{5}{6} = \frac{5 \times 2}{6 \times 2} = \frac{10}{12}$

 $\frac{8}{21} = \frac{8 \times 3}{21 \times 3} = \frac{24}{63}$ 5 5 × 7 35

LCM of 9, 3, 21 and 9 = 63

Now, $\frac{2}{9} = \frac{2 \times 7}{9 \times 7} = \frac{14}{63}$

(ii) $\frac{2}{9}, \frac{2}{3}, \frac{8}{21}, \frac{5}{9}$

$$\frac{5}{9} = \frac{5 \times 7}{9 \times 7} = \frac{35}{63}$$

 $\frac{2}{3} = \frac{2 \times 21}{3 \times 21} = \frac{42}{63}$

Ascending Order

 $\frac{14}{63} < \frac{24}{63} < \frac{35}{63} < \frac{42}{63}$ $\therefore \quad \frac{2}{9} < \frac{8}{21} < \frac{5}{9} < \frac{2}{3}$

Descending order

$$\frac{56}{70} > \frac{49}{70} > \frac{30}{70} > \frac{14}{70}$$

$$\frac{10}{12} > \frac{9}{12} > \frac{8}{12} > \frac{6}{12}$$
∴ $\frac{4}{5} > \frac{7}{10} > \frac{3}{7} > \frac{1}{5}$
∴ $\frac{5}{6} > \frac{3}{4} > \frac{2}{3} > \frac{1}{2}$

6. Sum of row II = $\frac{16}{43} + \frac{21}{43} + \frac{20}{43} = \frac{57}{43}$
Sum of row III = $\frac{18}{43} + \frac{17}{43} + \frac{22}{43} = \frac{57}{43}$
Sum of row III = $\frac{18}{43} + \frac{17}{43} + \frac{22}{43} = \frac{57}{43}$
Now sum of column I = $\frac{16}{43} + \frac{23}{43} + \frac{18}{43} = \frac{57}{43}$
sum of column II = $\frac{21}{43} + \frac{19}{43} + \frac{17}{43} = \frac{57}{43}$
sum of column III = $\frac{20}{43} + \frac{15}{43} + \frac{22}{43} = \frac{57}{43}$
Hence it is a magic square.
7. Weight of potatoes = $3\frac{3}{4}$ kg = $\frac{15}{4}$ kg
Weight of cauliflowers = $1\frac{3}{2}$ kg
Weight of cauliflowers = $1\frac{3}{4}$ kg = $\frac{7}{4}$ kg
Total weight of vegetables = $\left(\frac{15}{4} + \frac{3}{2} + \frac{7}{4}\right)$ kg
 $= \frac{(15 + 6 + 7)}{4}$ kg
Hence, payal purchased 7 kg of vegetables.
8. Side of square shaped frame = $17\frac{2}{9}$ cm
 $= \frac{155}{9}$ cm
∴ Perimeter of frame = $4 \times \text{side}$
 $= 4 \times \frac{155}{9}$
 $= \frac{620}{9} = 68\frac{8}{9}$ cm.

9. Quantity of milk bought in the morning = 3 litres Quantity of milk left in the evening = $\frac{5}{8}$ litres

$$\therefore \qquad \text{Used milk} = \left(\frac{3}{1} - \frac{5}{8}\right) \text{litres}$$
$$= \left(\frac{24 - 5}{8}\right) = \frac{19}{8} = 2\frac{3}{8} \text{ litres}$$

Hence, $2\frac{3}{8}$ litres of milk was used during the day.

10. Quantity of milk = $\frac{2}{5}$ cup Quantity of cream = $\frac{1}{2}$ cup

Required more quantity of milk than cream

$$= \frac{2}{5} - \frac{1}{3}$$
$$= \frac{6-5}{15} = \frac{1}{15}$$

Hence, $\frac{1}{15}$ cup of milk is required more than cream.

Nirmala finishes a work in $=\frac{5}{6}$ hours 11. Poonam finishes the same work in = $\frac{3}{4}$ hours Extra time taken by Nirmala = $\frac{5}{6} - \frac{3}{4}$ $=\frac{10-9}{12}=\frac{1}{12}$

Hence, Nirmala finished the work in $\frac{1}{12}$ hours more than Poonam.

12. Let *x* be the required number.

	$12\frac{3}{5} - x = 7\frac{1}{5}$
or	$\frac{63}{5} - x = \frac{36}{5}$
or	$\frac{63}{5} - \frac{36}{5} = x$
or	$\frac{27}{5} = x$

$$\therefore \qquad x = 5\frac{2}{5}$$

Hence, the required fraction is $5\frac{2}{5}$.

Exercise 2.2

1.	Find: (i) $\frac{8}{3} \times 5$	(ii) $12 \times \frac{3}{5}$	(iii) $20 \times \frac{3}{4}$	(iv) $\frac{3}{5} \times 7$
	$3 = \frac{40}{3}$	$5 = \frac{36}{5}$	$4 = 5 \times 3$	$5 = \frac{21}{5}$
	3	5		5
2.	Find $\frac{1}{3}$ of :		= 15	
	(i) 48	(ii) 36	(iii) 102	(iv) 15
	$=\frac{1}{3}\times 48=16$	$=\frac{1}{3}\times 36=12$	$=\frac{1}{3}\times 102$	$=\frac{1}{3} \times 15 = 5$
3.	Find $\frac{5}{7}$ of :		= 34	
	(i) 35	(ii) 154	(iii) 105	(iv) 175
	$=\frac{5}{7}\times35$	$=\frac{5}{7} \times 154$	$=\frac{5}{7} \times 105$	$=\frac{5}{7} \times 175$
	= 25	= 110	= 75	= 125
4.	Find the products : (i) $\frac{2}{3} \times 2\frac{2}{3}$	(ii) $(1 \times 2)^{1}$	$(:::) 2^{1} \times 1^{1} \times 1^{1}$	(iv) 1 , 1 5
	$(1) - \frac{1}{3} \times \frac{2}{3} - \frac{1}{3}$	(ii) $4\frac{1}{3} \times 3\frac{1}{2}$	(iii) $2\frac{1}{3} \times 1\frac{1}{12} \times 1\frac{1}{6}$	$(1v) - \frac{1}{7} \times 4 - \frac{1}{4}$
	$=\frac{2}{3}\times\frac{8}{3}$	$=\frac{13}{3}\times\frac{7}{2}$	$=\frac{7}{\cancel{3}}\times\frac{\cancel{3}}{\cancel{2}}\times\frac{7}{6}$	$=\frac{1}{7}\times 4\frac{5}{4}$
	$=\frac{16}{9}$	$=\frac{91}{6}$	$=\frac{49}{6}$	$=\frac{1}{7}\times\frac{21}{4}$
	$=1\frac{7}{9}$	$=15\frac{1}{6}$	$=4\frac{1}{12}$	$=\frac{3}{4}$
	(v) $\frac{3}{4}$ of a rupee	(vi) $\frac{5}{6}$ of a day		
	$=\frac{3}{4} \times 100$ paise	$=\frac{5}{6} \times 24$ hours		
	= 75 paise	= 20 hours	0	
5.	Distance covered in	n an hour = $4\frac{3}{5}$ km = $\frac{23}{5}$	$\frac{3}{5}$ km	
	Distance covered in 2	$\frac{1}{7} \text{ hours} = \frac{23}{5} \times 2 \frac{1}{7} \text{ km}$		
		$=\frac{23}{5}\times\frac{15}{7}$		
		$=\frac{69}{7}=9\frac{6}{7}\mathrm{km}$		
	Hence, distance cover	ed by the man in $2\frac{1}{7}$ ho	purs is $9\frac{6}{7}$ km.	

6.

7.

D

Cost of 1 bread = ₹ 16
$$\frac{3}{4} = ₹ \frac{67}{4}$$

Cost of 15 breads = ₹ $\frac{67}{4} \times 15$
= ₹ $\frac{1005}{4} = ₹ 251 \frac{1}{4}$
Hence, cost of 15 breads is ₹ 251 $\frac{1}{4}$.
Distance covered by car in an hour = $70 \frac{1}{3} \text{ km} = \frac{211}{3} \text{ km}$
Distance covered by car in 6 hours = $\frac{211}{3} \times 6 \text{ km}$
= 422 km

Hence, Car will cover 422 km distance in 6 hours.

- 8.
- Which is greater : (i) $\frac{1}{3}$ of $\frac{3}{4}$ or $\frac{1}{2}$ of $\frac{4}{5}$ 1 4 $\frac{1}{3} \times \frac{3}{4}$ $\frac{1}{2} \times \frac{4}{5}$ $\frac{1}{4}$ \times $\frac{2}{5}$ 5 < 8 Hence, $\frac{1}{2}$ of $\frac{4}{5}$ is greater. (ii) $\frac{6}{7}$ of $\frac{49}{5}$ or $\frac{3}{8}$ of $\frac{48}{5}$ $\frac{6}{7} \times \frac{49}{5} \qquad \qquad \frac{3}{8} \times \frac{48}{5}$ $\frac{42}{5}$ > $\frac{18}{5}$ Hence, $\frac{6}{7}$ of $\frac{49}{5}$ is greater. Cost of 1 kg tomatoes = ₹ 19 $\frac{1}{4}$ = ₹ $\frac{77}{4}$ 9. Cost of $3\frac{1}{2}$ kg tomatoes = $\overline{4}\frac{77}{4} \times 3\frac{1}{2}$ = ₹ $\frac{77}{4} \times \frac{7}{2}$ = ₹ $\frac{539}{8} =$ ₹ 67 $\frac{3}{8}$ Hence, cost of $3\frac{1}{2}$ kg tomatoes is $\gtrless 67\frac{3}{8}$.

10. Side of a square field = $12 \frac{1}{2} \text{ m} = \frac{25}{2} \text{ m}$ Area of field = side × side $= \left(\frac{25}{2} \times \frac{25}{2}\right) \text{ m}^2$ $= \frac{625}{4} \text{ m}^2$ $= 156 \frac{1}{4} \text{ m}^2$

Hence, the required area of field is $156 \frac{1}{4} \text{ m}^2$.

1. Find :

	(i) $16 \div \frac{4}{5}$	(ii) $4 \div 3\frac{1}{5}$	(iii) $3\frac{5}{7} \div 1\frac{4}{9}$
	$=16 \times \frac{5}{4}$	$=4\div\frac{16}{5}$	$=\frac{26}{7}\div\frac{13}{9}$
	= 20	$=4 \times \frac{5}{16}$	$=\frac{26}{7}\times\frac{9}{13}$
		$=\frac{5}{4}=1\frac{1}{4}$	$=\frac{18}{7}=2\frac{4}{7}$
	(iv) $\frac{7}{3} \div 5\frac{1}{2}$	$(v) \frac{2}{15} \div 8$	(vi) $5\frac{3}{7} \div 14$
	$=\frac{7}{3}\div\frac{11}{2}$	$=\frac{2}{15}\times\frac{1}{8}$	$=\frac{38}{7} \div 14$
	$=\frac{7}{3}\times\frac{2}{11}$	$=\frac{1}{60}$	$=\frac{38}{7}\times\frac{1}{14}$
	$=\frac{14}{33}$		$=\frac{19}{49}$
2.	Which one is greater :		
	$\frac{14}{5} \div 9$ or	$\frac{16}{7} \div 8$	
	$\frac{14}{5} \times \frac{1}{9}$	$\frac{16}{7} \times \frac{1}{8}$	
	$rac{14}{45}$ $ imes$	$\frac{2}{7}$	
	98 >	90	

Hence, $\frac{14}{5} \div 9$ is greater.

3. Simplify :

$$\left(\frac{3}{2} \div \frac{4}{5}\right) + \left(\frac{9}{5} \times \frac{10}{3}\right)$$

$$= \left(\frac{3}{2} \times \frac{5}{4}\right) + 6$$

$$= \frac{15}{8} + \frac{6}{1} = \frac{15 + 48}{8} = \frac{63}{8} = 7\frac{7}{8}$$
4. Cost of $5\frac{2}{5}$ kg of sugar $= ₹ 101\frac{1}{4}$
Cost of per kg of sugar $= ₹ \left(101\frac{1}{4} \div 5\frac{2}{5}\right)$

$$= ₹ \left(\frac{405}{4} \div \frac{27}{5}\right)$$

$$= ₹ \left(\frac{405}{4} \times \frac{5}{27}\right)$$

$$= ₹ \left(\frac{45}{4} \times \frac{5}{3}\right) = ₹ \frac{75}{4} = ₹ 18\frac{3}{4}$$
Hence, cost of 1 kg sugar is ₹ 18 $\frac{3}{4}$.

Hence, cost of 1 kg sugar is $\gtrless 18\frac{3}{4}$

5. Let required number be x. $\frac{5}{6} \times x = 3\frac{1}{3}$ $\frac{5}{6} \times x = \frac{10}{3}$

or

$$x = \frac{10}{3} \div \frac{5}{6}$$
$$= \frac{10}{3} \times \frac{6}{5}$$
$$x = 4$$

Hence, the required number is 4.

6. Length of a rope =
$$8\frac{1}{3}m = \frac{25}{3}m$$

It is cut into equal pieces = 5
∴ Length of each piece = $\left(\frac{25}{3} \div 5\right)m$
 $= \frac{25}{3} \times \frac{1}{5} = \frac{5}{3}$
 $= 1\frac{2}{3}m$
Hence, length of each piece of rope is $1\frac{2}{3}m$.
7. Product of two numbers = $87\frac{3}{4} = \frac{351}{4}$
One of them = 18
∴ Let other number = x

...

$$x \times 18 = \frac{351}{4}$$
$$x = \frac{351}{4} \div 8$$
$$= \frac{351}{4} \times \frac{1}{8} = \frac{351}{32} = 10\frac{31}{32}$$

Hence, the required number is $10 \frac{31}{32}$.

Chapter 3 : Decimals

Exercise 3.1

- 1. Express the following in decimal form : (i) $300 + 40 + \frac{0}{10} + \frac{4}{100} + \frac{6}{1000}$ = 300 + 40 + 0.0 + 0.04 + 0.006 = 340.046(ii) $20 + 4 + \frac{3}{10} + \frac{5}{1000}$ = 20 + 4 + 0.3 + 0.005= 24.305
- 2. Express the following decimals in the expanded form :

$$= 10 + 8 + \frac{4}{10} + \frac{0}{100} + \frac{7}{1000}$$

(ii) 125.367

$$= 100 + 20 + 5 + \frac{3}{10} + \frac{6}{100} + \frac{7}{1000}$$

(iii) 100.03

(i) 18.407

$$= 100 + \frac{0}{10} + \frac{3}{100}$$

- 3. Compare using < , > or = :
 (i) $6.093 \le 8.99$ (ii) $5.09 \le 5.9$

 (iii) $0.5 \ge 0.15$ (iv) $0.76 \le 0.80$
- 4. Arrange in ascending order :
 (i) 2.24, 3.12, 1.04, 4.01, 0.897 ascending order = 0.897, 1.04, 2.24, 3.12, 4.01
 - (ii) 8.06, 8.059, 8.013, 8.3, 8.60
 ascending order = 8. 013, 8.059, 8.06, 8.3, 8.60

5. Arrange in descending order :

- (i) 3.21, 4.03, 5.1, 3.8, 4.5 descending order = 5.1, 4.5, 4.03, 3.8, 3.21
- (ii) 6.8, 8.67, 18.4, 6.08
 descending order = 18.4, 8.67, 6.8, 6.08

6. Which is greater :

(i) 0.9 or 0.99	(ii) 2.35 or 2.36	(iii) 5.05 or 5.5
9 99	$\frac{235}{<} \frac{236}{>}$	505 55
10 100	100 100	100 10
900 < 990	So, 2.36 is greater.	$\frac{505}{100} < \frac{550}{100}$
So, 0.99 is greater.		So, 5.5 is greater.

So, 0.99 is greater.

7. Add :

(i) 1.8 + 1.97 + 0.9

- 1.80 1.97 = 0. 9 0 6 7 4.
- 8. Subtract :

(i) 8.91 from 9.1

9.10 8.91 0. 19

116 . 195

(ii) 58.35 + 22.50 + 35.345

58 . 350

500

345

22 .

35 .

(ii) 61.79 from 80 80. 00 = 79

-	61		79
	18	•	21
_			

9. Cost of a fan = ₹ 795.80 Cost of a watch = ₹ 318.75 Spend money = ₹ 795.80 +₹ 318.75

Total money ₹ 1114.55

Hence, Ruchi spent ₹ 1114.55.

10. Distance travelled by car = 5 km 12 mDistance travelled by autorickshaw = 2 km 156 m

km m 5 012 +2 156 Total distance = <u>7 1</u>68 Hence, Ankit travelled 7 km 168 m. **11.** Height of plant on Friday = 8.5 cmIt grew on Saturday = 0.75 cm $= 8.50 \,\mathrm{cm}$ $+ 0.75 \,\mathrm{cm}$

:. Total Height of plant = 9.25 cm

Hence, the height of bean plant was 9.25 cm on Saturday.

12.	Total money Sita had = ₹ 1000 The cost of medicine = ₹ 689.01			
	= 1000.00	-		
	- 689.01			
	Left money = 310.99			
	Hence, she got back ₹ 310.99 fro			
13.	138.8 km			
	-60.0 km			
	Required difference = 78.8 km			
14.	Simplify : 65.7 - 34.55 + 76.4			
	65.70	Now,	31 . 15	
	- 34 . 55	+	76 . 40	
	31 . 15		107 . 55	
		Exercise 3.2		
1.	Find the following products :			
	(i) 28.15×5	(ii) 1.3×2.5	(iii) 0.86×1.3	
	= 140.75	= 3.25	= 1.118	
	(iv) 405.08 × 4.2	(v) 56.8×0.15	(vi) 20.1 × 2.05	
	= 1701.336	= 8.520	= 41.205	
2.	Find :		() 0.005 100	
	(i) 2.5×10	(ii) 3.57×10	(iii) 2.397 × 100	
	= 25.0	= 35.70	= 239.700	
	(iv) 57.08×100	(v) 12.5×1000	(vi) 0.0062×1000)
9	= 5708.00	= 12500.0	= 6.2000	
3.	Find the product : (i) $1.1 \times 1.2 \times 1.3$	(ii) $2.4 \times 2.5 \times 2.6$		
	= 1.716	= 15.600		
	(iii) $0.1 \times 0.01 \times 0.001$	(iv) $0.8 \times 3.5 \times 0.05$		
	= 0.000001	= 0.1400		
4.	Side of a square = $2.5 \mathrm{cm}$	- 0.1400		
	Area of square = side \times side			
	$= 2.5 \times 2.5 \mathrm{cm}^2$			
	$= 6.25 \text{ cm}^2$			
	Hence, the required area of squ			
5.	The cost of 1 m of ribbon = $\overline{\mathbf{x}}$			
	The cost of 3.5 m of ribbon = $\overline{\mathbf{x}}$	12.62×3.5 44.170		
	Hence, the required cost of ribb			

6. Distance covered by a car in 1 litre of petrol = 19.7 kmDistance covered by the car in 20 litres of petrol = $19.7 \times 20 \text{ km}$

= 394.0 km

Hence, the required distance is 394 km.

7. The cost of 1 kg of apples = ₹ 15.50 Cost of 4.5 kg of apples = ₹ 15.50 × 4.5

= ₹ 69.750

Hence, the cost of 4.5 kg of apples is 69.750.

8. The perimeter of field = 348.75 m
∴ the distance covered in 4 rounds

 $= (348.75 \times 4) \text{ m}$

= 1395.00 m

Hence, the distance covered by the boys is 1395 m.

9. The cost of petrol per litre = ₹ 72 The cost of petrol 4.2 litres = ₹ 72 × 4.2

=₹302.4

Hence, my father paid ₹ 302.4 at petrol pump.

Exercise 3.3

1. Find :

2.

(i) $3.7 \div 10$ (ii) 63.7 ÷ 100 (iii) 5.32 ÷ 1000 $=\frac{63.7}{100}$ $=\frac{5.32}{1000}$ $=\frac{3.7}{10}$ $=\frac{37}{100}=0.37$ $=\frac{637}{1000}=0.637$ $=\frac{532}{100000}=0.00532$ (v) $0.82 \div 100$ (vi) 0.3 ÷ 1000 (iv) 32.10 ÷ 1000 $=\frac{32.10}{1000}$ $=\frac{0.82}{100}$ $=\frac{0.3}{1000}$ $=\frac{3}{10000}=0.0003$ $=\frac{321}{10000}=0.0321$ $=\frac{82}{10000}=0.0082$ Find : (i) 9.6 ÷ 4 (ii) 0.324 ÷ 9 (iii) $16.2 \div 50$ $=\frac{324}{9000}=0.036$ $=\frac{96}{40}=2.4$ $=\frac{162}{500}$ = 0.325

(iv)
$$1.477 \div 700$$
 (v) $0.1705 \div 500$ (vi) $81 \div 0.09$
= $\frac{1477}{700000}$ = $\frac{1705}{5000000}$ = $\frac{81}{0.09}$
= 0.00211 = 0.000341 = $\frac{8100}{9}$

= 900

3. Divide :

5.

(i) $4.12 \div 4$	(ii) $57.44 \div 8$	(iii) 10.08 ÷ 9
$=\frac{4.12}{400}$	$=\frac{5744}{800}$	$=\frac{1008}{900}$
= 1.03 (iv) 1.56 ÷ 1.3	= 7.18 (v) 24 \div 0.006	= 1.12 (vi) 129 ÷ 15
$=\frac{1.56}{1.3}$	$=\frac{24000}{0006}$	$=\frac{129}{15}$
$=\frac{156}{130}=1.2$	= 4000	= 8.6

4. Fill in the blanks with correct divisor (10, 100 or 1000) :

(i)
$$33.7 \div \underline{10} = 3.37$$
(ii) $253.9 \div \underline{100} = 2.539$ (iii) $42.53 \div \underline{1000} = 0.04253$ (iv) $329.4 \div \underline{10} = 32.94$ Which is greater ?

 $\begin{array}{rcrcrcr} 0.0048 \div 0.06 & \text{or} & 0.0714 \div 0.07 \\ & \frac{48}{10000} \div \frac{6}{100} & & \frac{714}{10000} \div \frac{7}{100} \\ & \frac{48}{10000} \times \frac{100}{6} & & \frac{714}{10000} \times \frac{100}{7} \\ & \frac{8}{100} & < & \frac{102}{100} \end{array}$

Hence, $0.0714 \div 0.07$ is greater.

6. The product of two numbers =
$$128.25$$

One of the numbers = 9.5

Let other number = x

$$\therefore \qquad x = 128.25 \div 9.5$$
$$x \times 9.5 = 128.25$$
$$= \frac{128.25}{9.5} \times \frac{10}{100}$$
$$= \frac{12825}{950} = 13.5$$

Hence, the required number is 13.5.

 Charges for the distance per km = ₹ 9.50 Total money paid by passenger = ₹ 80.75

Required distance travelled by the passenger

$$=\frac{80.75}{9.50}=8.5$$

Hence, the passenger travelled 8.5 km distance.

8. The cost of 9.5 kg mangoes = ₹ 147.25 The cost of 1 kg mangoes = ₹ $\frac{147.25}{9.5}$

Hence, the cost of 1 kg of mangoes is ₹ 15.5

9. Total length of cloth = 58.8 m

If it was shared equally by 4 friends then each friend got = $\frac{58.8}{4}$ m

= 14.7 m

Hence, each friend got 14.7 m of cloth.

10. The cost of 14 bottles of orange juice = ₹ 217.00 The cost of 1 bottle of orange juice = ₹ $\frac{217.00}{14}$

Hence, the cost of 1 bottle is ₹ 15.5

Chapter 4 : Rational Numbers

Exercise 4.1

1. Express each of the following as a rational number with positive denominator :

i)
$$\frac{35}{-51}$$
 (ii) $\frac{12}{-19}$ (iii) $\frac{-68}{-75}$
= $\frac{35 \times (-1)}{-51 \times (-1)} = \frac{-35}{51}$ = $\frac{12 \times (-1)}{-19 \times (-1)} = \frac{-12}{19}$ = $\frac{-68 \times (-1)}{-75 \times (-1)} = \frac{68}{75}$

2. Express $\frac{5}{8}$ as a rational number with numerator :

(i)
$$-20$$
 (ii) 100
 $=\frac{5 \times (-4)}{8 \times (-4)} = \frac{-20}{-32}$ $=\frac{5 \times 20}{8 \times 20} = \frac{100}{160}$

3. Express $\frac{7}{9}$ as a rational number with denominator :

(i)	-54	(ii)	108	
	$7 \times (-6)$ 42		7×12	84
	$\frac{1}{9 \times (-6)} = \frac{1}{-54}$		$\overline{9 \times 12} =$	

- 4. Find equivalent rational numbers having a common denominator :
 - (i) $\frac{7}{6}$ and $\frac{5}{18}$ LCM of 6 and 18 = 18 Now, $\frac{7 \times 3}{6 \times 3} = \frac{21}{18}$ Hence the required rational numbers are $= \frac{21}{18}$ and $\frac{5}{18}$ (ii) $\frac{3}{4}, \frac{5}{24}$ and $\frac{1}{2}$ LCM of 4, 24 and 2 = 24 Now, $\frac{3 \times 6}{4 \times 6} = \frac{18}{24}$ $\frac{5 \times 1}{24 \times 1} = \frac{5}{24}$ $\frac{1 \times 12}{2 \times 12} = \frac{12}{24}$ Hence the required numbers are $\frac{18}{24}, \frac{5}{24}$ and $\frac{12}{24}$

5. Express the following in the standard form :

- (ii) $\frac{15}{-30} = -\frac{1}{2}$ (i) $\frac{4}{-20} = -\frac{1}{5}$ (iii) $\frac{-81}{-99} = \frac{81}{99} = \frac{9}{11}$ (iv) $\frac{360}{1080} = \frac{36}{108} = \frac{1}{3}$
- Find the value of *x*, if the following pairs of rational numbers are equal : 6.
 - (ii) $\frac{-5}{9}, \frac{10}{x}$ (i) $\frac{3}{7}, \frac{x}{42}$ We have $\frac{3}{7} = \frac{x}{42}$ We have $\frac{-5}{9} = \frac{10}{r}$ $3 \times 42 = 7 \times x$ $-5 \times x = 9 \times 10$ $x = \frac{3 \times 42}{7}$ $x = \frac{9 \times 10}{-5}$ x = 18x = -18_
- 7. Fill in the blanks :

$$\frac{3}{7} = \frac{15}{-28} = \frac{-15}{12}$$
$$\frac{3 \times (-4)}{7 \times (-4)} = \frac{-12}{-28} \text{ and } \frac{3 \times (-5)}{7 \times (-5)} = \frac{-15}{-35}$$

- Write the next four rational numbers in the following patterns : 8.
 - $\frac{-1}{2}, \frac{-2}{4}, \frac{-3}{6}, \dots$ (i)

Next four rational numbers are :

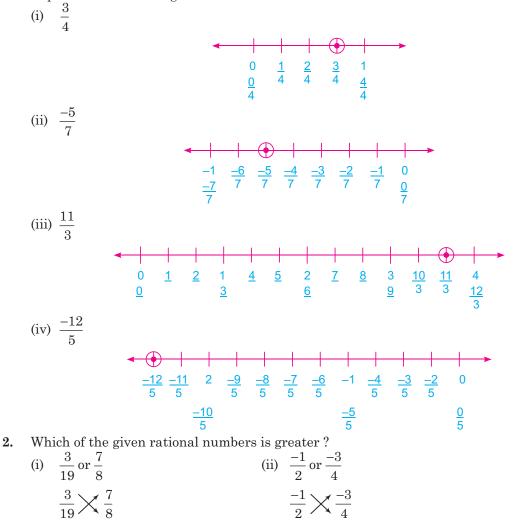
$$\frac{-4}{8}, \frac{-5}{10}, \frac{-6}{12}, \frac{-7}{14}$$

(ii) $\frac{-7}{9}, \frac{-14}{18}, \frac{-21}{27}, \dots$

Next four rational number are

$$\frac{-28}{36}, \frac{-35}{45}, \frac{-42}{54}, \frac{-49}{63}$$

Are the following rational numbers equal ? 179.


(i)
$$-5\frac{1}{3}$$
 and $\frac{17}{3}$
 $\therefore \frac{-16}{3} \neq \frac{17}{3}$
Hence $-5\frac{1}{3}$ and $\frac{17}{3}$ are not equal.
(ii) $\frac{-8}{9}$ and $\frac{40}{-45}$
 $\frac{-8}{9} \swarrow \frac{40}{-45}$
 $(-8) \times (-45) \quad 40 \times 9$

$$360 = 360$$
Hence $\frac{-8}{9}$ and $\frac{40}{-45}$ are equal.
10. Write $\frac{1}{3}$ with denominator as : -18, 42, - 99. Can $\frac{1}{3}$ be written with denominator 5 ?
 $\frac{1 \times (-6)}{3 \times (-6)} = \frac{\boxed{-6}}{-18}, \quad \frac{1 \times 14}{3 \times 14} = \frac{\boxed{14}}{42}$
 $\frac{1 \times (-33)}{3 \times (-33)} = \frac{\boxed{-33}}{-99}$

But $\frac{1}{3}$ can not be written with denominator as 5 because 5 is not a multiple of 3.

Exercise 4.2

1. Represent the following rational numbers on a number line :

$$3 \times 8 \ 19 \times 7 \qquad 4 \times (-1) \ (-3) \times 2
24 < 133 \qquad -4 > -6
\frac{3}{19} < \frac{7}{8} \qquad -\frac{1}{12} > -\frac{3}{4}
Hence, $\frac{7}{8}$ is greater. Hence, $-\frac{1}{2}$ is greater.
(iii) $\qquad -\frac{5}{8} \ \text{or} \quad \frac{6}{7} \\
\Rightarrow \quad \frac{5}{8} \ \text{or} \quad \frac{6}{7} \\
5 \times 7 \qquad 8 \times 6 \\
35 < 48 \\
\frac{5}{8} < \frac{6}{7} \\
\text{Hence, } \frac{7}{7} \ \text{is greater.} \\
\text{Hence, } \frac{7}{12} \ \frac{5}{8} \ \text{or} \quad -\frac{7}{12} \\
\qquad \frac{9}{14} \sim \frac{17}{21} \qquad (ii) \quad -\frac{5}{6} \ \text{or} \quad -\frac{7}{9} \qquad (iii) \qquad -\frac{5}{11} \ \text{or} \quad -\frac{7}{12} \\
\qquad \frac{9}{14} \sim \frac{17}{21} \qquad -\frac{5}{6} < -\frac{7}{9} \qquad (iii) \qquad -\frac{5}{11} \times -\frac{7}{12} \\
\qquad 189 < 238 \qquad -45 < 42 \qquad -60 > -77 \\
\Rightarrow \quad \frac{9}{14} < \frac{17}{21} \qquad -\frac{5}{6} < -\frac{7}{9} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{17}{21} \qquad -\frac{5}{6} < -\frac{7}{9} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{17}{21} \qquad -\frac{5}{6} < -\frac{7}{9} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{17}{21} \qquad -\frac{5}{6} < -\frac{7}{9} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{17}{12} \qquad -\frac{5}{6} < -\frac{7}{9} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{17}{12} \qquad -\frac{5}{6} < -\frac{7}{9} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{1}{9} = \frac{1}{1} = -\frac{1}{2} = \frac{3}{9} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{1}{12} \qquad -\frac{5}{12} = -\frac{5}{9} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{1}{12} \qquad -\frac{5}{12} < -\frac{7}{12} = \frac{1}{12} \qquad -\frac{5}{11} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{1}{21} \qquad -\frac{5}{1} < -\frac{7}{12} = \frac{1}{1} = -\frac{5}{1} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{1}{21} \qquad -\frac{5}{1} < -\frac{7}{12} = \frac{1}{1} = -\frac{5}{1} > -\frac{7}{12} \\
\text{Hence, } \frac{9}{14} = \frac{1}{21} \qquad -\frac{5}{1} < -\frac{7}{12} = \frac{1}{9} \\
(i) 0 \le -\frac{1}{15} < 0 < 4 \\
(ii) -\frac{1}{15} < -\frac{1}{30} \qquad 0 < 4 \\
(ii) -5 < \frac{6}{17} \qquad (iv) -\frac{7}{8} < -\frac{8}{9} \\
-\frac{5}{1} < -\frac{6}{17} \qquad (-7) \times 9 \quad 8 \times (-8) \\
-85 < 6 \qquad -63 > -64 \\$$$

5. Arrange the following in ascending order :

(i)
$$-\frac{1}{4}, \frac{11}{5}, \frac{2}{7}, \frac{3}{2}$$

LCM of 4, 5, 7 and 2 = 140
Now, $-\frac{1 \times 35}{4 \times 35} = \frac{-35}{120}, \frac{11 \times 28}{5 \times 28} = \frac{308}{140}$
 $\frac{2 \times 20}{7 \times 20} = \frac{40}{140}$ and $\frac{3 \times 70}{2 \times 70} = \frac{210}{140}$
Ascending order : $-\frac{35}{120} < \frac{40}{140} < \frac{210}{140} < \frac{308}{140}$
 $\therefore \quad -\frac{1}{4} < \frac{2}{7} < \frac{3}{2} < \frac{11}{5}$
(ii) $\frac{4}{3}, -\frac{5}{6}, -\frac{7}{-12}, \frac{11}{-24}$
 $= \frac{4}{3}, -\frac{5}{6}, \frac{7}{12}, -\frac{11}{24}$
LCM of 3, 6, 12 and 24 = 24
Now, $\frac{4 \times 8}{3 \times 8} = \frac{32}{24}, \frac{-5 \times 4}{6 \times 4} = -\frac{20}{24}$
 $\frac{7 \times 2}{12 \times 2} = \frac{14}{24}$ and $\frac{-11 \times 1}{24 \times 1} = -\frac{11}{24}$
Ascending order : $-\frac{11}{24} < -\frac{20}{24} < \frac{14}{24} < \frac{32}{24}$
 $\therefore \qquad -\frac{11}{14} < -\frac{5}{6} < \frac{7}{12} < \frac{4}{3}$
Arrange the following in decending order :
(i) $\frac{5}{-6}, -\frac{7}{9}, 0, \frac{2}{-3}$
 $\frac{-5}{6}, -\frac{7}{9}, 0, \frac{2}{-3}$
LCM of 6, 9, 1 and 3 = 18
Now, $\frac{-5 \times 3}{6 \times 3} = -\frac{15}{18}, -\frac{7 \times 2}{9 \times 2} = -\frac{14}{18}$
 $\frac{0 \times 18}{1 \times 18} = \frac{0}{18}$ and $\frac{-2 \times 6}{3 \times 6} = -\frac{12}{18}$
Descending order : $\frac{0}{18} > -\frac{12}{18} > -\frac{14}{18} > -\frac{15}{18}$
 $\therefore \qquad 0 > \frac{-2}{3} > -\frac{7}{9} > \frac{-5}{6}$

6.

(ii)
$$\frac{17}{-20}, \frac{9}{-5}, \frac{-3}{1}, \frac{-1}{10}$$

 $\frac{-17}{20}, \frac{-9}{5}, \frac{-3}{1}, \frac{-1}{10}$
LCM of 20, 5, 1 and 10 = 20
Now, $\frac{-17 \times 1}{20 \times 1} = \frac{-17}{20}, \frac{-9 \times 4}{5 \times 4} = \frac{-36}{20}$
 $\frac{-3 \times 20}{1 \times 20} = \frac{-60}{20}$ and $\frac{-1 \times 2}{10 \times 2} = \frac{-2}{20}$
Descending order :
 $\frac{-2}{20} > \frac{-17}{20} > \frac{-36}{20} > \frac{-60}{20}$

$$\frac{-2}{20} > \frac{-17}{20} > \frac{-36}{20} > \frac{-60}{20}$$
$$\frac{-1}{10} > \frac{-17}{20} > \frac{-9}{5} > \frac{-3}{1}$$

Find four rational numbers between : (i) $\frac{13}{40}$ and $\frac{2}{25}$ 7.

...

First we represent the two integers as rational numbers with common denominator.

$$\frac{13 \times 5}{40 \times 5} = \frac{65}{200} \text{ and } \frac{2 \times 8}{25 \times 8} = \frac{16}{200}$$

Now, any four rational numbers between $\frac{65}{200}$ and $\frac{16}{100}$ are
 $\frac{64}{200}, \frac{63}{200}, \frac{62}{200}, \frac{61}{200} \dots$

(ii) $\frac{-6}{4}$ and $\frac{-6}{3}$

First we represent the two integers as rational numbers with common denominator.

$$\frac{-3 \times 3}{4 \times 3} = \frac{-9}{12}$$
 and $\frac{-4 \times 4}{3 \times 4} = \frac{-16}{12}$

Now, we can take any four national numbers between $\frac{-9}{12}$ and $\frac{-16}{12}$

$$\frac{-12}{12}, \frac{-11}{12}, \frac{-12}{12}, \frac{-13}{12}, \dots$$

5

Write the absolute value of the following rational numbers : 8.

(i)
$$\frac{-7}{3}$$
 : absolute value of $\frac{-7}{3} = \left| -\frac{7}{3} \right| = \frac{7}{3}$
(ii) $\frac{3}{3}$: absolute value of $\frac{3}{3} = \left| \frac{3}{3} \right| = \frac{3}{3}$

(ii)
$$\frac{-5}{5}$$
 : absolute value of $\frac{-5}{5} = \left|\frac{-5}{5}\right| = \frac{-5}{5}$
(iii) $\frac{-5}{5}$: absolute value of $\frac{-5}{-5} = \left|\frac{-5}{-5}\right| = \frac{-5}{5}$

(iii)
$$\frac{-8}{-8}$$
 : absolute value of $\frac{-8}{-8} - \left|\frac{-8}{-8}\right| - \frac{-8}{8}$
(iv) $\frac{3}{-4}$: absolute value of $\frac{3}{-4} = \left|\frac{3}{-4}\right| = \frac{3}{4}$

Exercise 4.3

1. Add the following rational numbers :

1.	Add the following fational numbers.	
	(i) $\frac{8}{9}$ and $\frac{4}{9}$	(ii) $\frac{7}{-15}$ and $\frac{4}{15}$
	$=\frac{8}{9}+\frac{4}{9}$	$=\frac{-7}{15}+\frac{4}{15}$
	$=\frac{8+4}{9}=\frac{12}{9}$	$=\frac{-7+4}{15}$
	$=\frac{4}{3}$	$=\frac{-3}{15}=\frac{-1}{5}$
	(iii) $\frac{-2}{3}$ and $\frac{6}{7}$	(iv) $-2\frac{5}{6}$ and $\frac{13}{-6}$
	$=\frac{-2}{3}+\frac{6}{7}$	$=\frac{-17}{6}+\left(\frac{-13}{6}\right)$
	$=\frac{-14+18}{21}$	$=\frac{-17}{6}-\frac{13}{6}$
	$=\frac{4}{21}$	$=\frac{-17-13}{6}$
		$=\frac{-30}{6}=-5$
	(v) $\frac{-7}{64}$ and $\frac{3}{-16}$	(vi) $\frac{8}{-19}$ and $\frac{-2}{3}$
	$=\frac{-7}{64}+\left(\frac{-3}{16}\right)$	$=\frac{-8}{19} + \left(\frac{-2}{3}\right)$
	$=\frac{-7}{64}-\frac{3}{16}$	$=\frac{-8}{19}-\frac{2}{3}$
	$=\frac{-7-12}{64}$	$=\frac{-24-38}{57}$
	$=\frac{-19}{64}$	$=\frac{-62}{57}$
2.	Subtract the following rational numbers	:
	0 0	E C

(i)
$$\frac{2}{3} \operatorname{from} \frac{3}{5}$$

 $= \frac{3}{5} - \frac{2}{3}$
 $= \frac{9 - 10}{15}$
 $= \frac{-1}{15}$
(ii) $\frac{5}{63} \operatorname{from} \frac{-6}{7}$
 $= \frac{-6}{7} - \frac{5}{63}$
 $= \frac{-54 - 5}{63}$
 $= \frac{-59}{63}$
26

(v)
$$\frac{5}{4} - \frac{7}{6} - \left(\frac{-2}{3}\right)$$

(vi) $5\frac{1}{6} - \frac{2}{3} + \frac{1}{6}$
 $= \frac{5}{4} - \frac{7}{6} + \frac{2}{3}$
 $= \frac{15 - 14 + 8}{12}$
 $= \frac{1 + 8}{12} = \frac{9}{12}$
 $= \frac{3}{4}$
(vi) $5\frac{1}{6} - \frac{2}{3} + \frac{1}{6}$
 $= \frac{31 - 4 + 1}{6}$
 $= \frac{27 + 1}{6}$
 $= \frac{28}{6} = \frac{14}{3} = 4\frac{2}{3}$

4. Sum of two rational numbers = $\frac{11}{5}$

One of them =
$$\frac{-4}{15}$$

Let the other number be *x*.

 $\therefore \qquad x + \left(\frac{-4}{15}\right) = \frac{11}{5}$ or $x = \frac{11}{5} + \frac{4}{15}$ $= \frac{33 + 4}{15} = \frac{37}{15}$

Hence, the required rational number is
$$\frac{37}{15}$$
.

Then $\frac{-3}{4} - x = \frac{5}{6}$ or $\frac{-3}{4} - \frac{5}{6} = x$ or $\frac{-9 - 10}{12} = x$

...

$$x = \frac{-19}{12}$$

Hence, the required rational number is $\frac{-19}{12}$

6. Sum of
$$\frac{11}{5}$$
 and $\frac{-3}{10} = \frac{11}{5} + \left(\frac{-3}{10}\right)$
= $\frac{11}{5} - \frac{3}{10}$
= $\frac{22 - 3}{10} = \frac{19}{10}$
Sum of $\frac{-3}{4}$ and $\frac{7}{8} = \frac{-3}{4} + \frac{7}{8}$

$$= \frac{-6+7}{8} = \frac{1}{8}$$

Now, subtract $\frac{19}{20}$ from $\frac{1}{8} = \frac{1}{8} - \frac{19}{20}$
$$= \frac{5-38}{40} = \frac{-33}{40}$$

7. Verify the following for, x + y = y + x:

(i)
$$\frac{-3}{5}$$
 and $\frac{-4}{3}$
We have $x = \frac{-3}{5}$ and $y = \frac{-4}{3}$
LHS = $x + y$
RHS = $y + x$
 $= \frac{-3}{5} + \left(\frac{-4}{3}\right)$
 $= \frac{-4}{3} + \left(\frac{-3}{5}\right)$
 $= \frac{-4}{3} - \frac{4}{5}$
 $= \frac{-4}{3} - \frac{3}{5}$
 $= \frac{-9 - 20}{15}$
 $= \frac{-29}{15}$
 $= \frac{-29}{15}$

 \therefore LHS = RHS

Hence it is verified for x + y = y + x.

(ii) -4 and
$$\frac{7}{6}$$

We have, $x = -4$ and $y = \frac{7}{6}$
LHS = $x + y$
RHS = $y + x$
 $= \frac{-4}{1} + \frac{7}{6}$
 $= \frac{-24 + 7}{6}$
 $= \frac{-17}{6}$
RHS = $y + x$
 $= \frac{7}{6} + (-4)$
 $= \frac{7}{6} - \frac{4}{1}$
 $= \frac{7 - 24}{6} = \frac{-17}{6}$

$$\therefore$$
 LHS = RHS

Hence it is verified for x + y = y + x.

8. Verify the following :

(i)
$$\left(\frac{-5}{8}\right) + \left(\frac{-3}{6}\right) = \left(\frac{-3}{6}\right) + \left(\frac{-5}{8}\right)$$

 $\frac{-5}{8} - \frac{3}{6} = \frac{-3}{6} - \frac{5}{8}$

$$\frac{-15-12}{24} = \frac{-12-15}{24}$$
$$\frac{-27}{24} = \frac{-27}{24}$$
$$\frac{-9}{8} = \frac{-9}{8}$$
$$\therefore \text{ LHS = RHS (Verified)}$$
$$(ii) \left(\frac{-7}{6} + \frac{2}{-5}\right) + \left(\frac{-13}{12}\right) = \frac{-7}{6} + \left[\frac{2}{-5} + \left(\frac{-13}{12}\right)\right]$$
$$\left(\frac{-7}{6} - \frac{2}{5}\right) + \left(\frac{-13}{12}\right) = \frac{-7}{6} + \left[\frac{-2}{5} - \frac{13}{12}\right]$$
$$\left(\frac{-35-12}{30}\right) - \frac{13}{12} = \frac{-7}{6} + \left[\frac{-24-65}{60}\right]$$
$$\frac{-47}{30} - \frac{13}{12} = \frac{-7}{6} + \left(\frac{-89}{60}\right)$$
$$\frac{-94-65}{60} = \frac{-7}{6} - \frac{89}{60}$$
$$\frac{-159}{60} = \frac{-70-89}{60}$$
$$\frac{-53}{20} = \frac{-53}{20}$$
$$\therefore \text{ LHS = RHS}$$

(Verified)

Exercise 4.4

1. Multiply:
(i)
$$\frac{23}{5} \times \left(\frac{-25}{11}\right)$$
(ii) $\frac{11}{7} \times \frac{(-3)}{8}$
(iii) $\frac{-3}{12} \times (-48)$
 $= \frac{23}{5} \times \frac{(-25)}{11}$
 $= \frac{-33}{56}$
 $= \frac{-3}{12} \times (-48)$
 $= \frac{-115}{11}$
(iv) $\frac{25}{9} \times \left(\frac{-36}{5}\right)$
(v) $\left(\frac{-3}{7}\right)$ by $\frac{7}{5}$
(vi) $\left(\frac{9}{-11}\right)$ by $\left(\frac{22}{-27}\right)$
 $= \frac{25}{9} \times \frac{(-36)}{5}$
 $= \frac{-3}{7} \times \frac{7}{5}$
 $= \frac{9}{-11} \times \frac{22}{-27}$
 $= 5 \times (-4)$
 $= \frac{-3}{5}$
 $= \frac{2}{3}$

2. Find the value of :

3. Simplify :

$$\begin{array}{ll} (i) & \left(\frac{36}{11} \times \frac{88}{18}\right) + \left(\frac{-26}{14} \times \frac{-28}{13}\right) \\ & = \left(\frac{36}{11} \times \frac{88}{18}\right) + \left(\frac{-26}{14} \times \frac{-28}{13}\right) \\ & = 16 + \left[(-2) \times (-2)\right] \\ & = 16 + 4 = 20 \\ (ii) & \left(\frac{-9}{4} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times 0\right) - \left(\frac{5}{-6} \times \frac{18}{25}\right) \\ & = \left(\frac{-9}{4} \times \frac{2}{3}\right) + 0 - \left(\frac{5}{-6} \times \frac{18}{25}\right) \\ & = \frac{-3}{2} + 0 - \left(\frac{3}{-5}\right) \\ & = \frac{-3}{2} + \frac{3}{5} = \frac{-15 + 6}{10} = \frac{-9}{10} \\ (iii) & \frac{-55}{21} \div \left(1\frac{3}{8} \times \frac{16}{33}\right) \qquad (iv) & \left(\frac{13}{19} \div \frac{65}{12}\right) \times \left(\frac{-4}{15}\right) \\ & = \frac{-55}{21} \div \left(\frac{11}{8} \times \frac{16}{33}\right) \qquad = \left(\frac{13}{19} \times \frac{12}{65}\right) \times \left(\frac{-4}{15}\right) \\ & = \frac{-55}{21} \div \frac{2}{3} \qquad = \frac{12}{95} \times \frac{(-4)}{15} \\ & = \frac{-55}{21} \times \frac{3}{2} \qquad = \frac{-16}{475} \\ & = \frac{-55}{14} \end{array}$$

Product of two rational numbers = $\frac{11}{12}$, If one of the numbers is $\frac{-55}{84}$, find the other. 4. One of the numbers = $\frac{-55}{84}$ Let the other number be *x*. Then $x \times \frac{(-55)}{84} = \frac{11}{12}$ $x = \frac{11}{12} \times \frac{84}{-55}$ or $x = \frac{-7}{5}$... Hence, the required rational no. is $\frac{-7}{5}$. Let the required number be *x*. 5. Then $x \times \left(\frac{-36}{35}\right) = \frac{-6}{5}$ $x = \frac{-6}{5} \times \frac{35}{-36}$ $x = \frac{-7}{-6} = \frac{7}{6}$ Hence, the required rational number is $\frac{7}{2}$ Let the required number be *x*. 6. Then $x \div \left(\frac{-65}{7}\right) = \frac{-12}{5}$ $x \times \frac{7}{-65} = \frac{-12}{5}$ or $x = \frac{-12 \times (-65)}{5 \times 7}$ $x = \frac{156}{7}$ Hence, the required rational number is $\frac{156}{7}$. Distance covered by a bus in an hour = $50 \frac{2}{\pi}$ km 7. Distance covered by the bus in $3\frac{1}{2}$ hours = $50\frac{2}{5} \times 3\frac{1}{2}$ km $=\frac{252}{5}\times\frac{7}{2}\,\mathrm{km}$ $=\frac{126}{5}\times7$ $=\frac{882}{5}$ km $= 176 \frac{2}{5} \text{ km}$ Hence, the bus will cover $176 \frac{2}{5}$ km distance in $3 \frac{1}{2}$ hours.

The price of 11 cricket balls = ₹ $32\frac{1}{5}$ 8. The price of 1 cricket ball = ₹ $32\frac{1}{5} \div 11$ $=\frac{161}{5}\times\frac{1}{11}$ $=\frac{161}{55}=2\frac{51}{55}$ Hence, the cost of 1 cricket ball is $\gtrless 2 \frac{51}{55}$. Sum of $-1\frac{1}{4}$ and $3\frac{2}{3} = -1\frac{1}{4} + 3\frac{2}{3}$ 9. $=\frac{-5}{4}+\frac{11}{3}$ $=\frac{-15+44}{12}$ $=\frac{29}{12}$ Product of $1\frac{1}{2}$ and $1\frac{5}{6} = 1\frac{1}{2} \times 1\frac{5}{6}$ $=\frac{3}{2}\times\frac{11}{6}$ $=\frac{11}{4}$ No, divide $\frac{29}{12}$ by $\frac{11}{4} = \frac{29}{12} \div \frac{11}{4}$ $=\frac{29}{12}\times\frac{4}{11}=\frac{29}{33}$ **10.** Cost of two dozens (24) bananas = ₹ $85\frac{1}{3}$ Cost of 1 banana = $\overline{\langle} \left(85 \frac{1}{3} \div 24 \right)$ $= \operatorname{\overline{\P}}\left(\frac{256}{3} \times \frac{1}{24}\right)$ = ₹ $\frac{32}{3 \times 3}$ = ₹ $\frac{32}{9}$ = ₹ $3\frac{5}{9}$ Hence, the cost of a banana is $\mathbf{\overline{\xi}} = 3\frac{5}{9}$.

11. Sum of
$$\frac{2}{5}$$
 and $\frac{3}{4} = \frac{2}{5} + \frac{3}{4}$
 $= \frac{8+15}{20} = \frac{23}{20}$
Difference of $\frac{2}{5}$ and $\frac{3}{4} = \frac{2}{5} - \frac{3}{4}$
 $= \frac{8-15}{20} = \frac{-7}{20}$
Now, divide $\frac{23}{20}$ by $\left(\frac{-7}{20}\right)$
 $= \frac{23}{20} \div \left(\frac{-7}{20}\right)$
 $= \frac{23}{20} \times \frac{20}{-7} = \frac{-23}{7}$

12. Verify whether the following are true or false :

(i)
$$\frac{5}{7} \times \left(\frac{-28}{25}\right) = \left(\frac{-28}{25}\right) \times \frac{5}{7}$$

 $\frac{5}{7} \times \frac{(-28)}{25} = \frac{(-28)}{25} \times \frac{5}{7}$
 $\frac{-4}{5} = \frac{-4}{5}$
∴ LHS = RHS (True)
(ii) $\left(\frac{-7}{3} \times \frac{12}{5}\right) \times \frac{4}{9} = \frac{-7}{3} \times \left(\frac{8}{21} \times \frac{3}{4}\right)$
 $\left(\frac{-7}{1} \times \frac{4}{5}\right) \times \frac{4}{9} = \frac{-1}{3} \times \frac{2}{1}$
 $\frac{-28}{5} \times \frac{4}{9} = \frac{-2}{3}$
 $\frac{-112}{45} \neq \frac{-2}{3}$
∴ LHS \neq RHS (False)
(iii) $\frac{-9}{35} \div \frac{45}{26} = \frac{45}{26} \div \left(\frac{-9}{35}\right)$
 $-\frac{1}{35} \times \frac{26}{5} = \frac{5}{26} \times \frac{35}{-1}$
 $\frac{-26}{175} \neq \frac{175}{-26}$
∴ LHS \neq RHS (False)

(iv)
$$\left(\frac{5}{3} \div \frac{1}{3}\right) \div \frac{5}{2} = \frac{5}{3} \div \left(\frac{1}{3} \div \frac{5}{2}\right)$$

 $\left(\frac{5}{3} \times \frac{3}{1}\right) \div \frac{5}{2} = \frac{5}{3} \div \left(\frac{1}{3} \times \frac{2}{5}\right)$
 $5 \times \frac{2}{5} = \frac{5}{3} \div \frac{2}{15}$
 $2 = \frac{5}{3} \times \frac{15}{2}$
 $2 \neq \frac{25}{2}$ (False)
(v) $\left[\left(\frac{-3}{5}\right) \div \frac{12}{35}\right] \div \frac{1}{14} = \left(\frac{-3}{5}\right) \div \left(\frac{12}{35} \div \frac{1}{14}\right)$
 $\left[\frac{-3}{5} \times \frac{35}{12}\right] \div \frac{1}{14} = \frac{-3}{5} \div \left(\frac{12}{35} \times \frac{14}{1}\right)$
 $\frac{-7}{4} \times 14 = \frac{-3}{5} \div \frac{24}{5}$
 $\frac{-49}{2} = \frac{-3}{5} \times \frac{5}{24}$
 $\frac{-49}{2} \neq \frac{-1}{8}$ (False)

Chapter 5 : Exponents

Exercise 5.1

1. Express the following in the exponential form :
(i)
$$a \times a \times a \times a \times a \times a$$

 $= a^{6}$
(ii) $\left(\frac{-9}{5}\right) \times \left(\frac{-9}{5}\right) \times \left(\frac{-9}{5}\right) \times \left(\frac{-9}{5}\right)$
(iii) $3 \times 3 \times 3 \times 2 \times 2 \times 2 \times 2$
 $= 3^{3} \times 2^{4}$
(iv) $(-b) \times (-b) \times (-c) \times (-c) \times (-c)$
 $= 3^{3} \times 2^{4}$
(v) $p \times p \times (-q) \times (-q) \times (-q)$
 $= p^{2} \times (-q)^{3}$
2. Find the value of :
(i) 3^{5}
(ii) $(10)^{3}$
 $= 3 \times 3 \times 3 \times 3 \times 3$
 $= 10 \times 10 \times 10$
 $= 243$
(iv) $(-5)^{4}$
 $= 12 \times 12 \times 12 \times 12$
 $= 20736$
(iv) $(-5) \times (-5) \times (-5) \times (-5)$

- Identify the greater number in each of the following pairs : 3. (ii) $(2)^{10}$ or $(10)^2$ (i) $(2)^5$ or $(5)^2$ (iii) $(-7)^3$ or $(-3)^7$ $(2)^2$ $(5)^5$ $(2)^{10}$ $(10)^2$ $(-7)^3$ $(-3)^7$ -343 > -218732 > 251024 > 100Thus $(2)^{10}$ is greater. Thus, $(-7)^3$ is greater. Thus, $(2)^5$ is greater. Evaluate : **4**. (i) $(12)^3$ (ii) $(-8)^4$ $= 12 \times 12 \times 12$ $= (-8) \times (-8) \times (-8) \times (-8)$ = 1728= 4096(iii) $\left(\frac{-4}{5}\right)^3$ (iv) $\left(\frac{-1}{2}\right)^5$ $= \left(\frac{-4}{5}\right) \times \left(\frac{-4}{5}\right) \times \left(\frac{-4}{5}\right)$ $= \left(\frac{-1}{2}\right) \times \left(\frac{-1}{2}\right) \times \left(\frac{-1}{2}\right) \times \left(\frac{-1}{2}\right) \times \left(\frac{-1}{2}\right)$ $=\frac{-64}{125}$ $=\frac{-1}{32}$
- 5. Express the following in exponential form :

$$\frac{64}{729} = \frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$$
$$= \left(\frac{2}{3}\right)^{6}$$

(i)

2	64	3	729
2	32	3	243
2	16	3	81
2	8	3	27
2	4	3	9
2	2	3	3
	1		1

(ii)	-1331	11	1331
	$= (-11) \times (-11) \times (-11)$	11	121
	$=(-11)^{3}$	11	11
			1

(:::)	(iii) 648 = $2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$	2	
(111)		2	
		2	
$=2^3\times3^4$	3		
		3	
		3	

36

3

648

(iv) -128
=
$$(-2) \times (-2) \times (-2) \times (-2) \times (-2) \times (-2) \times (-2)$$

= $(-2)^7$

 2	128
 2	64
2	32
2	16
2	8
2	4
2	2
	1

6. Evaluate :
(i)
$$(-7)^2 + (-7)^3$$

 $= \frac{(-7)^2}{(-7)^3} = \frac{1}{(-7)} = -\frac{1}{7}$
(ii) $\left(-\frac{2}{5}\right)^3 \times \left(\frac{-1}{4}\right)^2$
 $= \frac{(-2) \times (-2) \times (-2)}{5 \times 5 \times 5} \times \frac{(-1)}{4} \times \frac{(-1)}{4}$
 $= \frac{(-2) \times (-4) \times (-4) \times (-4) \times (-5) \times (-5)}{5 \times 5 \times 5} \times \frac{(-1)}{4} \times \frac{(-1)}{4}$
 $= \frac{(-4) \times (-4) \times (-4) \times (-5) \times (-5)}{(-4) \times (-5) \times (-5)}$
 $= \frac{(-1)}{5 \times 5 \times 5} \times \frac{(-1)}{4} \times \frac{(-1)}{4}$
 $= \frac{(-4) \times (-4) \times (-4) \times (-5) \times (-5)}{(-4) \times (-5) \times (-5)}$
 $= \frac{(-4) \times (-4) \times (-4) \times (-5) \times (-5)}{(-4) \times (-5) \times (-5)}$
 $= \frac{(-4) \times (-4) \times (-4) \times (-5) \times (-5)}{(-4) \times (-5) \times (-5)}$
 $= \frac{(-4) \times (-4) \times (-4) \times (-5) \times (-5)}{(-4) \times (-5) \times (-5)}$
 $= \frac{(-4) \times (-4) \times (-4) \times (-5) \times (-5)}{(-4) \times (-5) \times (-5)}$
 $= \frac{(-4) \times (-4) \times (-4) \times (-5) \times (-5)}{(-5) \times (-5)} \times (-5) \times (-5)$
 $= \frac{(-4) \times (-4) \times (-4) \times (-5) \times (-5)}{(-5) \times (-5)} \times (-5) \times (-5) \times (-5)}$
 $= \frac{(-1) \times (-4) \times (-4) \times (-5) \times (-5)}{(-2) \times (-2)} \times (-2) \times (-2)}$
7. Find the value of :
(i) $(-1)^{24} \times (-1)^{12} \times (-1)^3$ (ii) $(-1)^{18} + (-1)^{13}$ (iii) $(-1)^{31} - (-1)^{50}$
 $= 1 \times 1 \times (-1) = 1 + (-1) = (-1) - 1$
 $= -1 = 1 - 1 = 0 = -1 - 1 = -2$
8. Simplify :
(i) $(\frac{3}{7})^2 \times (\frac{11}{3})^2 \times (\frac{3}{11})^2$ (ii) $(\frac{-2}{5})^4 \times (3)^2 \times (\frac{1}{2})^3$
 $= \frac{3 \times 3}{7 \times 7} \times \frac{11 \times 11}{3 \times 3} \times \frac{3 \times 3}{11 \times 11} = \frac{(-2) \times (-2) \times (-2)}{5 \times 5 \times 5 \times 5} \times 3 \times 3 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$
 $= \frac{9}{49} \Rightarrow \frac{18}{625}$
(iii) $0 \times (12)^2 \times (13)^2$ (iv) $(5^2 - 3^2) \times (2)^3$ (v) $(3^2 - 2^2) \times \frac{1}{25}$
 $= 0 \times 144 \times 169 = (25 - 9) \times 8 = (9 - 4) + \frac{1}{25}$
 $= 0 = 16 \times 8 = 5 \times \frac{25}{1} = 125$

= 128

 $= 16 \times 8$

= 0

9. Find the reciprocal of :

(i)
$$\left(\frac{-3}{5}\right)^2$$

Reciprocal = $\left(\frac{5}{-3}\right)^2$
= $\frac{25}{9}$
(ii) $\left(\frac{-2}{5}\right)^4$
Reciprocal = $\left(\frac{11}{-5}\right)^5$
Reciprocal = $\left(\frac{11}{-5}\right)^5$
= $-\frac{161051}{3125}$
(ii) $\left(\frac{-3}{4}\right)^3$
Reciprocal = $\left(\frac{-5}{2}\right)^4$
Reciprocal = $\left(\frac{-5}{2}\right)^4$

10. Express the following as powers :(i) 512 as a power of 2

	-
2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

3 729

(ii) 729 as a power of 3

3	243
3	81
3	27
3	9
3	3
	1

729 =	$3 \times$	3				
=	3^{6}					

Exercise 5.2

1. Simplify and express the answer in the exponential form :

(i)
$$5^{6} \times 5^{4}$$

 $= 5^{6+4}$
 $= (-2)^{7+3}$
 $= 5^{10}$
(ii) $(-8)^{48} \div (-8)^{3}$
 $= (-8)^{48-3}$
 $= (-8)^{45}$
(iv) $a^{12} \div a^{10}$
 $= (5)^{4+4} \div (5)^{2}$
 $= (5)^{8} \div (5)^{2}$
 $= (7)^{2} x^{-3}$
 $= (7)^{2} x^{-3}$
 $= (5)^{8} \div (5)^{2}$
 $= 5^{8-2} = 5^{6}$

$$(\text{vii}) \left(\frac{8}{9}\right)^5 \times \left(\frac{8}{9}\right)^3 \div \left(\frac{8}{9}\right)^2 \qquad (\text{viii}) (10^2)^3 \div (10)^5$$

$$= \left(\frac{8}{9}\right)^{5+3} \div \left(\frac{8}{9}\right)^2 \qquad = (10)^6 \div (10)^5$$

$$= \left(\frac{8}{9}\right)^8 \div \left(\frac{8}{9}\right)^2 \qquad = (10)^{6-5}$$

$$= \left(\frac{8}{9}\right)^{8-2} = \left(\frac{8}{9}\right)^6 \qquad = (10)^1 = 10$$

$$(\text{ix}) \ a^{99} \times a^2 \times a^3 = a^{99+2+3} = a^{104} \qquad (\text{x}) \ (-7)^0 + 8^0 + 5^0$$

$$= a^{(99+2)} \times a^3 \qquad = 1+1+1$$

$$= a^{101} \times 1^3 \qquad = 3$$

$$= a^{101+3} = a^{104}$$
Even bases

2. Evaluate :

Evaluate :
(i)
$$(-6)^{-2}$$
(ii) $\left(\frac{5}{3}\right)^{-1} \times \left(\frac{3}{7}\right)^{-1}$
(iii) $(2^{-1} - 5^{-1})^{-1}$
 $= \left(\frac{1}{-6}\right)^2$
 $= \left(\frac{3}{5}\right)^1 \times \left(\frac{7}{3}\right)^1$
 $= \left(\frac{1}{2} - \frac{1}{5}\right)^{-1}$
 $= \left(\frac{1}{-6}\right) \times \left(\frac{1}{-6}\right)$
 $= \frac{3}{5} \times \frac{7}{3} = \frac{7}{5}$
 $= \left(\frac{5-2}{10}\right)^{-1}$
 $= \frac{1}{36}$
 $= \left(\frac{3}{10}\right)^{-1}$
 $= \left(\frac{10}{3}\right)^1 = \frac{10}{3}$

(iv)
$$\left(\frac{-2}{3}\right)^{-2} \times \left(\frac{4}{5}\right)^{3}$$

 $= \left(\frac{-3}{2}\right)^{2} \times \left(\frac{4}{5}\right)^{3}$
 $= \left(\frac{1}{5} \div \frac{1}{6}\right)^{-2}$
 $= \frac{9}{4} \times \frac{4 \times 4 \times 4}{5 \times 5 \times 5}$
 $= \left(\frac{1}{5} \times \frac{6}{1}\right)^{-2}$
 $= \left(\frac{1}{5} \times \frac{6}{1}\right)^{-2}$
 $= \left(\frac{5}{6}\right)^{2} = \frac{25}{36}$

3. Find the value of each of the following : $(2 \times 3 - 6)$

(i)
$$(5^{0} - 4^{0})$$
 (ii) $\left(\frac{1}{3}\right)^{2 \times 3 - 6}$ (iii) $\left(\frac{3}{2}\right)^{0} - \left(\frac{4}{5}\right)^{0} + \left(\frac{7}{8}\right)^{0}$
 $= (1 - 1)$ $= \left(\frac{1}{3}\right)^{6 - 6}$ $= 1 - 1 + 1$
 $= 0$ $= \left(\frac{1}{3}\right)^{0} = 1$ $= 1$
(iv) $(3^{0} - 2^{0}) \times (3^{0} + 2^{0})$

(x)
$$(3^{0} - 2^{0}) \times (3^{0} + 2^{0})$$

= $(1 - 1) \times (1 + 1)$
= $0 \times 2 = 0$

6.

4. Express the following with negative exponent :

(i)
$$\left(\frac{1}{4}\right)^3$$
 (ii) $\left(\frac{-5}{3}\right)^4$ (iii) $\left[\left(\frac{2}{3}\right)^2\right]^3$
$$= \left(\frac{4}{1}\right)^{-3} \qquad = \left(\frac{-3}{5}\right)^{-5} \qquad = \left(\frac{2}{3}\right)^6 = \left(\frac{3}{2}\right)^{-6}$$

5. Express the following with positive exponent :

(i)
$$\left(\frac{7}{8}\right)^{-2}$$
 (ii) $\left[\left(\frac{4}{3}\right)^{-2}\right]^3$ (iii) $\left[\left(\frac{3}{2}\right)^3\right]^{-2}$
 $= \left(\frac{8}{7}\right)^2$ $= \left(\frac{4}{3}\right)^{-6} = \left(\frac{3}{4}\right)^6$ $= \left(\frac{3}{2}\right)^{-6} = \left(\frac{2}{3}\right)^6$
Simplify:
(i) $\left(\frac{2}{3}\right)^2 \times \left(\frac{2}{3}\right)^3 \div \left(\frac{2}{3}\right)^5$ (ii) $\left[\left(\frac{4}{5}\right)^{-2} \div \left(\frac{4}{5}\right)^9\right] \times \left(\frac{4}{5}\right)^{11}$
 $= \left(\frac{2}{3}\right)^{2+3} \div \left(\frac{2}{3}\right)^5$ $= \left(\frac{4}{5}\right)^{-2-9} \times \left(\frac{4}{5}\right)^{11}$

 $= \left(\frac{4}{5}\right)^{-11} \times \left(\frac{4}{5}\right)^{11}$

(iv) $\frac{8 \times 9^2 \times 6^3 \times x^9}{12^2 \times 3^5 \times r^5}$

 $=\left(\frac{4}{5}\right)^{-11+11} = \left(\frac{4}{5}\right)^{0} = 1$

 $=\frac{2^{3} \times (3^{2})^{2} \times (3 \times 2)^{3} \times x^{9}}{(2 \times 2 \times 3)^{3} \times 3^{5} \times x^{5}}$

$$= \left(\frac{2}{3}\right)^{5-5} = \left(\frac{2}{3}\right)^{0} = 1$$

(iii)
$$\frac{6^{6} \times 10^{3} \times 5}{15^{4} \times 8^{3}} = \frac{(3 \times 2)^{6} \times (5 \times 2)^{3} \times 5}{(3 \times 5)^{4} \times (2^{3})^{3}}$$

 $=\left(\frac{2}{3}\right)^5 \div \left(\frac{2}{3}\right)^5$

$$= \frac{3^{6} \times 2^{6} \times 5^{3} \times 2^{3} \times 5}{3^{4} \times 5^{4} \times 2^{9}}$$
$$= \frac{3^{6} \times 2^{9} \times 5^{4}}{3^{4} \times 5^{4} \times 2^{9}} = 3^{6-4}$$
$$= 3^{2} = 9$$

- **7.** Find *x*, if :
 - (i) $2^x = 16$ $2^x = (2)^4$

Equating the powers, x = 4

(iii)
$$(11)^9 \div (11)^4 = (11)^{5x}$$

$$(11)^{9-4} = (11)^{5x}$$

$$(11)^5 = (11)^{5x}$$

Equating the powers

$$5 = 5x$$
$$x = \frac{5}{5}$$
$$x = 1$$

- $= \frac{2^3 \times 3^4 \times 3^3 \times 2^3 \times x^9}{2^3 \times 2^3 \times 3^3 \times 3^5 \times x^5}$ $= \frac{2^6 \times 3^7 \times x^9}{2^6 \times 3^8 \times x^5}$ $= 3^{7-8} \times x^{9-5}$ $= 3^{-1} \times x^4 = \frac{x^4}{3}$
- (ii) $4^x = 64$ $4^x = (4)^3$

Equating the powers, x = 3

(iv)
$$\left(\frac{2}{7}\right)^3 \times \left(\frac{2}{7}\right)^2 = \left(\frac{2}{7}\right)^{2x-1}$$

 $\left(\frac{2}{7}\right)^{3+2} = \left(\frac{2}{7}\right)^{2x-1}$
 $\left(\frac{2}{7}\right)^5 = \left(\frac{2}{7}\right)^{2x-1}$

Equating the powers

$$5 = 2x - 1$$
$$5 + 1 = 2x$$
$$6 = 2x$$
$$x = \frac{6}{2}$$

x = 3

8. Let the required number be *x*

Then
$$x \times (-4)^{-1} = (8)^{-1}$$

 $x \times \left(\frac{-1}{4}\right) = \frac{1}{8}$
 $x = \frac{1}{8} \times \frac{4}{(-1)}$
 $x = \frac{-1}{2}$

Hence, the required number is $\frac{-1}{2}$.

State whether true or false : 9.

(i)
$$3^{4} \times 3^{2} = 6^{6}$$

 $3^{4+2} = 6^{6}$
 $3^{6} \neq 6^{6}$
(ii) $7^{5} \div 7^{5} = 7^{0}$
 $7^{(5-5)} = 7^{0}$
 $7^{0} = 7^{0}$
 \therefore LHS \neq RHS (False)
(iii) $(2^{3})^{4} = 2^{12}$
 $(2)^{3 \times 4} = 2^{12}$
 $2^{12} = 2^{12}$
 \therefore LHS = RHS (True)
 \therefore LHS \neq RHS (False)
 \therefore LHS \neq RHS (False)

10. Simplify:

1.

$$\left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{5}\right)^{-2} + \left(\frac{1}{7}\right)^{-2}$$
$$= \left(\frac{3}{1}\right)^2 + \left(\frac{5}{1}\right)^2 + \left(\frac{7}{1}\right)^2$$
$$= 9 + 25 + 49 = 83$$

$$\therefore$$
 LHS \neq RHS (False

 $= 7.86 \times 1000000 \times 10^{3}$

 $= 6.3 \times \frac{1}{10000} \times 10^{-4}$

 $= 7.86 \times 10^{6} \times 10^{3} = 7.86 \times 10^{9}$

 $= 6.3 \times 10^{-4} \times 10^{-4} = 6.3 \times 10^{-8}$

~

Exercise 5.3 Express the following numbers in scientific notation : (ii) 7860000×10^3 (i) 538000000 $= 538 \times 100000000$

(iii) 0.0000123

$$= 1.23 \times \frac{1}{100000}$$
$$= 1.23 \times 10^{-5}$$

(v) 14 crores

(vi) 35490000

(iv) 0.00063×10^{-4}

 $= 3.549 \times 10000000$ $= 3.548 \times 10^{7}$

$$= 1.4 \times 10^{8}$$

= 140000000

 $= 1.4 \times 100000000$

- Write the following numbers in usual form : (i) 2.65×10^7 (ii) 2. (ii) 28.5×10^{-8}
 - $=\frac{285}{10}\times 10\times \frac{1}{100000000}$ $= 2.65 \times 10000000$ $=\frac{265}{100}\times 10000000$ $=\frac{285}{10^9}$ = 26500000= 0.00000285

(iii)
$$8.45 \times 10^5$$

= $\frac{845}{100} \times 100000$

= 845000

- 3. Express the numbers used in the following in standard form :
 - (i) The distance of the Earth from the sun

 $= 14960000 \,\mathrm{km}$

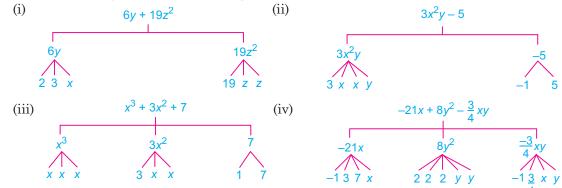
Standard form = 1.496×10^8 km

(ii) 1 micron =
$$\frac{1}{1000000}$$
 m
= $\frac{1}{10^6}$ m = 10⁻⁶ m (in standard form

(iii) Diameter of the Earth = 1,27,56,000 m

Standard form = 1.2756×10^7 m

4. The distance of the sun from the centre of the milky way Galaxy


= 300,000,000,000,000,000,000 m

 $= 3.0 \times 10^{20} \text{ m}$

Chapter 6 : Algebraic Expressions

Exercise 6.1

- 1. A combination of constants and variables connected by any of the symbols $+, -, \times$ or \div is called an algebraic expression.
- 2. Draw a tree diagram for the following :

- 3. Write the numerical coefficient of the all terms (other than constants) in the following algebraic expressions :
 - (i) 3a + 2b 3ccoefficient of a = 3coefficient of b = 2coefficient of c = -3

(ii) $6m^2 - 81$ coefficient of $m^2 = 6$

- (iii) $2l + 3b^2$ coefficient of l = 2coefficient of $b^2 = 3$ (iv) $\frac{22}{7}p - 3q + 2$ coefficient of $p = \frac{22}{7}$ coefficient of $p^2 = -3$ (v) $-5m^3 + m^2 + 4m - 5$ coefficient of $m^3 = -5$ coefficient of $m^2 = 1$ coefficient of m = 4
- 4. Classify the following as monomials, binomials, trinomials and quadrinomials :
 - (i) 3f 2g

It has two terms, so this expression is binomial.

(ii) $-6g^2 + 5q - 5$

It has 3 terms, so this express is trinomial.

(iii) $3x^2 - 5z$

It has two terms, so this express is binomial.

(iv) 100

It has only one term, so this express is monomial

(v) $\frac{-3}{4}x^2yz + 6a^2b + 5xyz + 8$

It has four terms, so this expression is quadrinomial.

- **5.** Find the like terms from the following :
 - (i) $16x^4$, 5, $-3x^4$, 2xlike terms are $16x^4$, $-3x^4$
 - (ii) $5xy, \frac{2}{3}x^2y, -23xy, 32x^2$ like terms are 5xy, -23xy
 - (iii) $15m, 2t, -2m, -t^2$ like terms are 15m, -2m
 - (iv) $-p^2q$, pq^2 , $3p^2q$, 5pqlike terms are $-p^2q$, $3p^2q$
- **6.** Find the coefficient :
 - (i) of x in $3x^2y$ = 3xy(ii) of y^2 in $-3x^3y^2$ $= -3x^3$ (iii) of c^2 in $-17a^2b^2c^2$ (iv) of xy in $\frac{1}{3}xyz$ $= -17a^2b^2$ $= \frac{1}{3}z$
- 7. Is $3x^2y + 2y x^2y$ a trinomial?

No, this expression $3x^2y + 2y - x^2y$ is not a trinomial, because $3x^2y$ and $-x^2y$ are like terms and on combining it gives a single term. So it is a binomial expression.

Exercise 6.2

1. Add the following :

(i)
$$3pq + 8, -5pq + 3, 7pq - 9$$

 $= (3pq + 8) + (-5pq + 3) + (7pq - 9)$
 $= 3pq + 8 - 5pq + 3 + 7pq - 9$
 $= (3pq - 5pq + 7pq) + (8 + 3 - 9)$
 $= (-2pq + 7pq) + (11 - 9)$
 $= 5pq + 2$

(ii)
$$5a + 3b, -3a + 2b, 4a + 9b$$

 $= (5a + 3b) + (-3a + 2b) + (4a + 9b)$
 $= 5a + 3b - 3a + 2b + 4a + 9b$
 $= (5a - 3a + 4a) + (3b + 2b + 9b)$
 $= (2a + 4a) + (5b + 9b)$
 $= 6a + 14b = 2 (3a + 7b)$
(iii) $5x^2 - y^2, -4x^2 - 4, -5y^2 + x^2 - 4$
 $= (5x^2 - y^2) + (-4x^2 - 4) + (-5y^2 + x^2 - 4)$
 $= (5x^2 - 4x^2 + x^2) + (-y^2 - 5y^2) + (-4 - 4)$
 $= (x^2 + x^{2)} + (-6y^2) + (-8)$
 $= 2x^2 - 6y^2 - 8$
 $= 2 (x^2 - 3y^2 - 4)$
(iv) $12m^2 - 19m + 8, -4m^2 - 7m + 11$
 $= (12m^2 - 19m + 8) + (-4m^2 - 7m + 11)$

$$= (12m^2 - 4m^2) + (-19m - 7m) + (8 + 11)$$
$$= 8m^2 - 26m + 19$$

(v)
$$2xy + yz + zx$$
, $5xy + 2yz - 2zx$, $xy + 2yz$
 $= (2xy + yz + zx) + (5xy + 2yz - 2zx) + (xy + 2yz)$
 $= (2xy + 5xy + xy) + (yz + 2yz + 2yz) + (zx - 2zx)$
 $= 8xy + 5yz - zx$
(vi) $a^2 + 2a - 3ab, 2a + 13ab, a^2 + 3a$

$$= (a^{2} + 2a - 3ab) + (2a + 13ab) + (a^{2} + 3a)$$
$$= (a^{2} + a^{2}) + (2a + 2a + 3a) + (-3ab + 13ab)$$
$$= 2a^{2} + 7a + 10ab$$
$$= a (2a + 7 + 10b)$$

2. Subtract the following :
(i)
$$4ab - 15b^2 - 3a^2 \text{ from } 4a^2 + 7b^2 - 6ab$$

 $= (4a^2 + 7b^2 - 6ab) - (4ab - 15b^2 - 3a^2)$
 $= 4a^2 + 7b^2 - 6ab - 4ab + 15b^2 + 3a^2$
 $= (4a^2 + 3a^2) + (7b^2 + 15b^2) + (-6ab - 4ab)$
 $= 7a^2 + 22b^2 - 10ab$
(ii) $-15a^2 + 10ab - 6b^2 \text{ from } 5a^2 + 4ab + 2b^2$
 $= (5a^2 + 4ab + 2b^2) - (-15a^2 + 10ab - 6b^2)$
 $= 5a^2 + 4ab + 2b^2 + 15a^2 - 10ab + 6b^2$
 $= (5a^2 + 15a^2) + (4ab - 10ab) + (2b^2 + 6b^2)$
 $= 20a^2 - 6ab + 8b^2$
(iii) $x^2y + y^2x + xyz \text{ from } 3x^2y + 2y^2 + 5xyz$
 $= (3x^2y + 2y^2 + 5xyz) - (x^2y + y^2x + xyz)$
 $= 3x^2y + 2y^2 + 5xyz - x^2y - y^2x - xyz$
 $= (3x^2y - x^2y) + 2y^2 - y^2x + (5xyz - xyz)$
 $= 2x^2y + 2y^2 - y^2x + 4xyz$
(iv) $\frac{2}{3}a^2b - \frac{1}{9}ab^2 + \frac{2}{5}ab - 1 \text{ from } -a^2b + 2$
 $= (-a^2b + 2) - (\frac{2}{3}a^2b - \frac{1}{9}ab^2 + \frac{2}{5}ab - 1)$
 $= -a^2b + 2 - \frac{2}{3}a^2b + \frac{1}{9}ab^2 - \frac{2}{5}ab + 1$
 $= (-a^2b - \frac{2}{3}a^2b) + \frac{1}{9}ab^2 - \frac{2}{5}ab + 1$
 $= (10m^2 - 7) - (-3m^2 + 6m + 3)$
 $= 10m^2 - 7 + 3m^2 - 6m - 3$
 $= (10m^2 + 3m^2) - 6m + (-7 - 3)$
 $= 13m^2 - 6m - 10$
(vi) $4x - 2x^2 - 2\text{ from } x^2 + 3x + 5$
 $= (x^2 + 3x + 5) - (4x - 2x^2 - 2)$
 $= x^2 + 3x + 5 - 4x + 2x^2 + 2$
 $= (x^2 + 2x^2) + (3x - 4x) + (5 + 2)$
 $= 3x^2 - x + 7$

(i)
$$x - [3y - [4x - (2y - 3z)]]$$

 $= x - [3y - [4x - 2y + 3z]]$
 $= x - [3y - 4x + 2y - 3z]$
 $= x - [5y - 4x - 3z]$
 $= x - 5y + 4x + 3z$
 $= 5x - 5y + 3z$
(ii) $ab^2 + 4a^2b - 6a^2b + ab^2$
 $= (ab^2 + ab^2) + (4a^2b - 6a^2b)$
 $= 2ab^2 - 2a^2b$
 $= 2ab^2 - 2a^2b$
 $= 2ab(b - a)$
(iii) $[5 - 3a + 5b - (a - b)] - [5a - (4a - 5a - 2b)]$
 $= [5 - 3a + 5b - a + b] - [5a - (-a - 2b)]$
 $= [5 - 4a + 6b] - [5a + a + 2b]$
 $= (5 - 4a + 6b) - (6a + 2b)$
 $= 5 - 4a + 6b - 6a - 2b$
 $= -10a + 4b + 5$
(iv) $\frac{2}{3}m - \frac{4}{5}n + \frac{3}{5}p + (\frac{-3}{4}m - \frac{5}{2}n + \frac{2}{3}p)$
 $= (\frac{2}{3}m - \frac{4}{5}n + \frac{3}{5}p - (\frac{-3}{4}m - \frac{5}{2}n + \frac{2}{3}p)$
 $= (\frac{2}{3}m - \frac{4}{5}n + \frac{3}{5}p - (\frac{-3}{4}m - \frac{5}{2}n + \frac{2}{3}p)$
 $= (\frac{8m - 9m}{12}) + (\frac{-8n - 25n}{10}) + (\frac{9p + 10p}{15})$
 $= \frac{-m}{12} + (\frac{-33n}{10}) + \frac{19}{15}p$
4. Sum of $(2x + 3y - 7z)$ and $(3x - y + 6z)$
 $= 2x + 3y - 4z + 3x - y + 6z$
 $= 5x + 2y + 2z$
Now, subtract $(x + 2y + z)$ from $(5x + 2y + 2z)$
 $= (5x + 2y + 2z - (x + 2y + z))$
 $= 5x + 2y + 2z - (x + 2y + z)$
 $= 5x + 2y + 2z - (x + 2y + z)$
Now, subtract $(x + 2y + z) - (x + 2y + z)$
 $= 5x + 2y + 2z - (x + 2y - z) - z$
 $= 4x + 0y + z = 4x + z$
5. Let the required expression be X.
then $(5xy + y^2z - zx) + X = xy + 3y^2z - 5zx$

$$= xy + 3y^{2}z - 5zx - 5xy - y^{2}z + zx$$

= $(xy - 5xy) + (3y^{2}z - y^{2}z) + (-5zx + zx)$
= $-4xy + 2y^{2}z - 4zx$
= $2(-2xy + y^{2}z - 2zx)$

Hence, the required expression is $2(-2xy + y^2z - 2zx)$

6. Let the required expression be X.
then
$$(a^3 - 3a^2 + 5a - 5) - X = a^2 + 2a + 7$$

 $(a^3 - 3a^2 + 5a - 5) - (a^2 + 2a + 7) = X$
 $a^3 - 3a^2 + 5a - 5 - a^2 - 2a - 7 = X$
 $a^3 - 4a^2 + 4a - 12 = X$
Hence, the required expression is $(a^3 - 4a^2 + 3a - 12)$.
7. Sum of $5x^2 - y^2 + xy$ and $x^2 + y^2 - xy$
 $= 5x^2 - y^2 + xy + x^2 + y^2 - xy$
 $= 6x^2$

Sum of $2x^2 + 2y^2 - 5xy$ and $3x^2 - y^2 + 4xy$ = $2x^2 + 2y^2 - 5xy + 3x^2 - y^2 + 4xy$ = $5x^2 + y^2 - xy$

Now, subtract $6x^2$ from $5x^2 + y^2 - xy$ = $5x^2 + y^2 - xy - 6x^2$

$$= -x^2 + y^2 - xy$$

8. Sides of a triangle are

$$x^{2} + 20, 2x^{2} + 7x + 3 \text{ and } 7x^{2} - 2x - 15$$

 \therefore Perimeter of triangle = sum of all sides

$$= (x^{2} + 20) + (2x^{2} + 7x + 3) + (7x^{2} - 2x - 15)$$
$$= (x^{2} + 2x^{2} + 7x^{2}) + (7x - 2x) + (20 + 3 - 15)$$
$$= 10x^{2} + 5x + 8$$

Hence, the perimeter of triangle is $(10x^2 + 5x + 8)$ unit.

9. The total money Amita had = ₹ 3x - 2y + 5zShe spent = ₹ 5x + y - 2zLeft money = ₹ {(3x - 2y + 5z) - (5x + y - 2z}) = ₹ (3x - 2y + 5z - 5x - y + 2z)= ₹ (-2x - 3y + 7z)

Hence, $\mathfrak{F}(-2x - 3y + 7z)$ is left with her.

10. The total length of wire = (17x + 5) m Length of wire cut from it = (5x + 7) m

> Left wire = (17x + 5) m - (5x + 7) m= (17x + 5 - 5x - 7) m= (12x - 2) m= 2 (6x - 1) m

Hence, the length of left wire is 2(6x - 1) m.

Exercise 6.3

If x = 3, find the value of : 1. (iii) $x^2 - 4x + 4$ (ii) $x^2 - 10$ (i) 35 + x $=(3)^2 - 10$ $=(3)^2 - 4 \times 3 + 4$ = 35 + 3= 9 - 12 + 4= 9 - 10= 38= -3 + 4= -1= 1 2. If x = -1, find the value of each of the following : (i) $2x^2 - 3x + 5$ (ii) $x^3 - 5$ $= 2 \times (-1)^2 - 3 \times (-1) + 5$ $=(-1)^3 - 5$ = -1 - 5 $= 2 \times 1 + 3 + 5$ = 2 + 3 + 5 = 10= -6(iii) $2x^3 + 3x^2 - x + 2$ $= 2 \times (-1)^3 + 3 \times (-1)^2 - (-1) + 2$ $= 2 \times (-1) + 3 \times 1 + 1 + 2$ = -2 + 3 + 1 + 2= 1 + 1 + 2 = 4Find the value of each of the following expressions, when x = 2 and y = -2: 3. (i) $3x^2 - 2xy + y^2$ $= 3 \times (2)^2 - 2 \times 2 \times (-2) + (-2)^2$ $= 3 \times 4 - (-8) + 4$ = 12 + 8 + 4 = 24(ii) $x^2 + 2xy + y^2$ $=(2)^{2} + 2 \times 2 \times (-2) + (-2)^{2}$ = 4 + (-8) + 4= 4 - 8 + 4 = -4 + 4 = 0(iii) $x^3 - 3xy$ $=(2)^{3} - 3 \times 2 \times (-2)$

= 8 + 12 = 20

If a = 1, b = 0 and c = -1, find the value of : 4. (i) $c^2 - 2ab(b-a)$ $=(-1)^2 - 2 \times 1 \times 0 \times (0 - 1)$ = 1 - 0 (-1) = 1 - 0 = 1(ii) $(a^2 - 3ac + a - 3b)$ $= [(1)^{2} - 3 \times 1 \times (-1) + 1 - 3 \times 0]$ = [1 + 3 + 1 - 0] = 5Simplify the expressions and find the value of the following when m = -3, n = 2: 5. (i) 3m + 5(n - 3) + 4(ii) 19 - 7m + 3n $= 3 \times (-3) + 5 (2 - 3) + 4$ $= 19 - 7 \times (-3) + 3 \times 2$ $= -9 + 5 \times (-1) + 4$ = 19 + 21 + 6= -9 - 5 + 4= 40 + 6= -14 + 4 = -10= 46(iii) $m^2 - 3 + n^2$ (iv) 15m + 2n + 12 $=(-3)^2 - 3 + (2)^2$ $= 15 \times (-3) + 2 \times 2 + 12$ = 9 - 3 + 4= -45 + 4 + 12= 6 + 4= -41 + 12= 10= -29

6. Simplify the expression and find the value of the following expressions if a = 0, b = -1 and c = 2

(i) $(a^2 - 8ab - 5) + (3ab - 4a^2 + 8)$ $=(a^{2}-4a^{2})+(-8ab+3ab)+(-5+8)$ $= -3a^2 - 5ab + 3$ We have a = 0, b = -1, c = 2 $= -3 \times (0)^2 - 5 \times 0 \times (-1) + 3$ = 0 - 0 + 3 = 3(ii) $2a - 3b - [3a - 2b - \{a - c - (a - 2b)\}]$ $= 2a - 3b - [3a - 2b - \{a - c - a + 2b\}]$ $= 2a - 3b - [3a - 2b - \{2b - c\}]$ = 2a - 3b - [3a - 2b - 2b + c]= 2a - 3b - [3a - 4b + c]= 2a - 3b - 3a + 4b - c= -a + b - cWe have, a = 0, b = -1, c = 2= -0 + (-1) - 2= 0 - 1 - 2 = -3

(iii)
$$15a^2 - 6ab^2 + 5c - 12a^2$$

= $(15a^2 - 12a^2) - 6ab^2 + 5c$
= $3a^2 - 6ab^2 + 5c$
We have, $a = 0, b = -1, c = 2$
= $3 \times (0)^2 - 6 \times 0 \times (-1)^2 + 5 \times 2$
= $0 - 0 + 10$
= 10

Chapter 7 : Linear Equations

Exercise 7.1

- 1. Write equations for the following statements :
 - (i) Seven times m is 91.

$$7m = 91$$

(ii) One-sixth of p is 2 more than 8.

$$\frac{1}{6}p = 2 + 8 \quad \Rightarrow \quad \frac{p}{6} = 10$$

(iii) The sum of numbers x and 8 is 25.

x + 8 = 25

(iv) Six times *x* added to 7 gives 19.

$$6x + 7 = 19$$

(v) 4 added to two-thirds of a number is 24.

$$\frac{2}{3}a + 4 = 24$$

(vi) 4 times a number is 20.

4x = 20 (let number be x)

(vii) 13 subtracted from 2 times a number is 8.

2x - 13 = 8 (let number be x)

(vii) 13 subtracted from 2 times a number is 8.

$$2x - 13 = 8 \qquad (\text{let number be } x)$$

(viii) When a number is multiplied by 7 and then 10 is subtracted from it, the value becomes 130.

7x - 10 = 130 (let number be *x*)

- 2. Write the following equations in statement forms :
 - (i) 3x + 5 = 27 5 is added to the 3 times a number is 27.
 - (ii) $\frac{2}{5}x = 10$ Two-fifth of a number *x* is 10.
 - (iii) 2x 7 = 11 Subtract 7 from 2 times a number x is 11.
 - (iv) 7x = 49 When 7 is multiplied a number *x*, product is 49.

(v) $5x - 15 = 5$	Difference of 5 times a number and 15 is 5.
(vi) $5 - y = 3$	Difference of 5 and y is 3.
(vii) $\frac{x}{9} = 5$	When a number x is divided by 9, the quotient is 5.
(11)	

(viii) x + 2 = 14 Sum of a number and 2 is 14.

3. Check whether the given value in the brackets is a solution to the given equations :

(i) 3y - 2 = 13(y = 5)(ii) 5x + 2 = 11(x = 3) $3 \times 5 - 2 = 13$ $5 \times 3 + 2 = 11$ 15 - 2 = 1315 + 2 = 1113 = 13 $17 \neq 11$ \therefore LHS = RHS $LHS \neq RHS$ Yes, y = 5 is a solution No, x = 3 is not a solution (iii) 2(3x+1) - 7 = 13 (x = 4)(iv) x + 5 = 0 (x = -5) $2(3 \times 4 + 1) - 7 = 13$ -5+5=02(12+1) - 7 = 130 = 026 - 7 = 13 \therefore LHS = RHS $19 \neq 13$ Yes, x = -5 is a solution. ·. $LHS \neq RHS$

No, x = 4 is not a solution.

4. Form an equation for the following cases :

(i) Ravi is 6 years older than his friend Neeru. The sum of their ages is 24.

 \Rightarrow Let Neeru's age = x years

Ravi's age = (x + 6) years

$$\therefore \qquad x + (x + 6) = 24$$

$$2x + 6 = 24$$

(ii) In an isosceles triangle, the vertex angle is trice of either base angle.

 \Rightarrow Let each base angle be *x*, then vertex angle will be 3x.

(iii A no. added to its half gives 33.

Let the number be *x*.

then
$$\frac{1}{2}x + x = 33$$

(iv) Mohan's father's age is 3 times the age of Mohan. The sum of their ages is 64 years. Let age of Mohan = x years

Age of Mohan's father = 3x years

 $\therefore \quad x + 3x = 64$

(v) A teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7. The height marks are 87.

 $\Rightarrow \quad \text{Let lowest marks be } x \\ \text{Then} \quad x + 7 = 87$

(vi) Square of a number *p* exceeds 11 by 14

$$\Rightarrow \qquad p+11=14$$

Exercise 7.2

1. Find the solution of the following equations by the trial and error method : (i) x + 5 = 12

x	LHS	RHS	Is LHS = RHS ?
1	1 + 5 = 6	12	No
2	2 + 5 = 7	12	No
3	3 + 5 = 8	12	No
4	4 + 5 = 9	12	No
5	5 + 5 = 10	12	No
6	6 + 5 = 11	12	No
7	7 + 5 = 12	12	Yes

 \therefore When x = 7, LHS = RHS

So, x = 7 is the solution of the given equation.

(ii) y - 2 = 3

у	LHS	RHS	Is LHS = RHS ?
1	1 - 2 = -1	3	No
2	2 - 2 = 0	3	No
3	3 - 2 = 1	3	No
4	4 - 2 = 2	3	No
5	5 - 2 = 3	3	Yes

 \therefore When y = 5, LHS = RHS

So, y = 5 is the solution of the given equation.

(iii)
$$\frac{x}{3} = 2$$

x	LHS	RHS	Is LHS = RHS ?
1	$\frac{1}{3}$	2	No
2	$\frac{2}{3}$	2	No
3	$\frac{3}{3} = 1$	2	No
4	$\frac{4}{3}$	2	No
5	$\frac{5}{3}$	2	No
6	$\frac{6}{3} = 2$	2	Yes

 \therefore When x = 6, LHS = RHS

So, x = 6 is the solution of the given equation

(iv)
$$\frac{1}{3}x + 8 = 11$$

x	LHS	RHS	Is LHS = RHS ?
1	$\frac{1}{3} + 8 = \frac{25}{3}$	11	No
2	$\frac{2}{3} + 8 = \frac{26}{3}$	11	No
3	$\frac{3}{3} + 8 = \frac{27}{3} = 9$	11	No
4	$\frac{4}{3} + 8 = \frac{28}{3}$	11	No
5	$\frac{5}{3} + 8 = \frac{29}{3}$	11	No
6	$\frac{6}{3} + 8 = \frac{30}{3} = 10$	11	No
7	$\frac{7}{3} + 8 = \frac{31}{3}$	11	No
8	$\frac{8}{3} + 8 = \frac{32}{3}$	11	No
9	$\frac{9}{3} + 8 = \frac{33}{3} = 11$	11	Yes

$$\therefore$$
 When $x = 9$, LHS = RHS

So, x = 9 is the solution of the given equation.

(v)
$$z - 4 = -3$$

z	LHS	RHS	Is LHS = RHS ?
1	1 - 4 = -3	-3	Yes

$$\therefore$$
 When $z = 1$, LHS = RHS

So, z = 1 is the solution of the given equation.

(vi)
$$4m = 28$$

т	LHS	RHS	Is LHS = RHS ?
1	$4 \times 1 = 4$	28	No
2	$4 \times 2 = 8$	28	No
3	$4 \times 3 = 12$	28	No
4	$4 \times 4 = 16$	28	No

5	$4 \times 5 = 20$	28	No
6	$4 \times 6 = 24$	28	No
7	$4 \times 7 = 28$	28	Yes

... When m = 7, LHS = RHS. So. m = 7 is the solution of the given equation. Give the steps that you will use to separate the variable and then solve the equations : 2. x - 4 = 0(ii) x + 5 = 3(i) Add 4 to both sides Subtract 5 from both sides x + 5 - 5 = 3 - 5x - 4 + 4 = 0 + 4x = 4x = -2(iii) y + 8 = 20(iv) p + 5 = -6Subtract 8 from both sides Subtract 5 from both sides y + 8 - 8 = 20 - 8p + 5 - 5 = -6 - 5y = 12p = -11(vi) $\frac{-s}{7} = 6$ 30t = -60(v) Multiply both sides by (-7)Divide both sides by 30 $\frac{30t}{30} = \frac{-60}{30}$ $\frac{-s}{7} \times (-7) = 6 \times (-7)$ t = -2s = -42(vii) $\frac{2}{3}m = 8$ (viii) 7x + 1 = 36Multiply by 3 to both sides Subtract 1 from both sides $\frac{2}{3}m \times 3 = 8 \times 3$ 7x + 1 - 1 = 36 - 12m = 247x = 35Divide both sides by 2 Divide both sides by 7 $\frac{2m}{2} = \frac{24}{2}$ $\frac{7x}{7} = \frac{35}{7}$ m = 12x = 5Solve the following equations : 3. 9z - 13 = 11z + 27(i) $\Rightarrow 9z - 11z = 27 + 13$ (Subtract 11 z from both sides) -2z = 40

$$z = \frac{40}{-2}$$
 (Divide both sides by 2)
$$z = -20$$

(ii) 8x + 5 = 6x - 108x - 6x = -10 - 5 (Subtract 6x from both sides)2x = -15 $x = \frac{-15}{2}$ (Divide both sides by 2)

Exercise 7.3

(i)
$$2m + \frac{5}{2} = \frac{37}{2}$$

 $2m = \frac{37}{2} - \frac{5}{2}$
 $2m = \frac{37}{2} - \frac{5}{2} - \frac{37}{2} - \frac{37$

(viii) 3(t+2) + 4 = 16Check 3(t+2) + 4 = 163t + 6 + 4 = 163(2+2)+43t + 10 = 16 $3 \times 4 + 4 = 16$ 3t = 16 - 1012 + 4 = 163t = 612 + 4 = 16 $t = \frac{6}{3}$ 16 = 16t = 2LHS = RHS*.*:. (ix) $2x - \frac{1}{3} = \frac{2}{3}x + 6$ Check $2x - \frac{1}{3} = \frac{2}{3}x + 6$ $\frac{2x}{1} - \frac{2}{3}x = \frac{6}{1} + \frac{1}{3}$ $2 \times \frac{19}{4} - \frac{1}{3} = \frac{2}{3} \times \frac{19}{4} + 6$ $\frac{19}{2} - \frac{1}{3} = \frac{19}{6} + \frac{6}{1}$ $\frac{6x - 2x}{3} = \frac{18 + 1}{3}$ $\frac{4x}{3} = \frac{19}{3}$ $\frac{57-2}{6} = \frac{19+36}{6}$ $\frac{4x}{3} = \frac{19}{3}$ $\frac{55}{6} = \frac{55}{6}$ $x = \frac{19}{4}$ \therefore LHS = RHS 3x - 9 = 2x + 3Check 3x - 9 = 2x + 3(x) 3x - 2x = 3 + 9 $3 \times 12 - 9 = 2 \times 12 + 3$ 36 - 9 = 24 + 3x = 1227 = 27 \therefore LHS = RHS (xi) 4(5x - 4) + 3(2x - 1) = 7Check 4(5x-4) + 3(2x-1) = 720x - 16 + 6x - 3 = 7 $4(5 \times 1 - 4) + 3(2 \times 1 - 1) = 7$ 20x + 6x - 19 = 74(5-4) + 3(2-1) = 726x = 7 + 19 $4 \times 1 + 3 \times 1 = 7$ 26x = 264 + 3 = 7 $x = \frac{26}{26}$ \therefore LHS = RHS x = 1

7 = 7

(xii)
$$-5 = 6 (p - 11) + 8$$

 $-5 = 6p - 66 + 8$
 $-5 = 6p - 58$
 $53 = 6p$
 $p = \frac{53}{6}$
Check $-5 = 6 \left(\frac{53}{6} - 11\right) + 8$
 $-5 = 6 \times \left(\frac{53 - 66}{6}\right) + 8$
 $-5 = (-13) + 8$
 $-5 = -5$
 \therefore LHS = RHS

2. Solve the following linear equation :

Exercise 7.4

1. Let the number be *x*.

Then
$$2x - 11 = 17$$

 $2x = 17 + 11$
 $2x = 28$
 $x = \frac{28}{2}$
 $x = 14$

x = 14Hence, the required number is 14.

2. Let the number be x. Then, $\frac{1}{3}x - 3 = 5$ $\frac{1}{3}x = 5 + 3$ $\frac{x}{3} = 8$ x = 24

Hence, the required number is 24.

3. If two consecutive odd numbers are (2x + 1), (2x + 3)then (2x + 1) + (2x + 3) = 100

$$4x + 4 = 100$$
$$4x = 100 - 4$$
$$4x = 96$$
$$x = \frac{96}{4} = 24$$
$$x = 24$$

Hence, Ist number = $2x + 1 = 2 \times 24 + 1 = 48 + 1 = 49$

- IInd number = $2x + 1 = 2 \times 24 + 3 = 48 + 3 = 51$
- 4. Let Ist number be *x*

Then IInd number be (95 - x)

:.

$$x + 3 = 95 - x$$
$$x + x = 95 - 3$$
$$2x = 92$$
$$x = \frac{92}{2}$$
$$x = 46$$

Hence Ist number = x = 46

- IInd number = 95 x = 95 46 = 49
- 5. Let the breadth of the rectangle be x m and the length of the rectangle be 3x m

Then,

$$2(l+b) = 96$$

 $2(x+3x) = 96$
 $2 \times 4x = 96$
 $8x = 96$
 $x = \frac{96}{8}$
 $x = 12$

Hence, breadth of the rectangle = x = 12 m

- Length of the rectangle = $3x = 3 \times 12 = 36$ m 6. Let Ist number be *x* and IInd number be 5x
- Then, x + 5x = 54 6x = 54 $x = \frac{54}{6}$ x = 9Hence, Ist number = x = 9IInd number = $5x = 5 \times 9 = 45$

7. Let Ashu's age = x years

Then.

Mother's age =
$$(3x + 5)$$
 years
Then,
 $3x + 5 = 44$
 $3x = 44 - 5$
 $3x = 39$
 \therefore
 $x = \frac{39}{3} = 13$
 $x = 13$

Hence, Ashu's age is 13 years.

8. Let the no. of boys in a school be x and the number of girls be (x + 42).

$$x + (x + 42) = 1200$$

$$2x + 42 = 1200$$

$$2x = 1200 - 42$$

$$2x = 1158$$

$$x = \frac{1158}{2} = 579$$

$$x = 579$$

Hence no. of boys in school = x = 579

Number of girls in school = x + 42 = 579 + 42 = 621

- **9.** Let Sakshi's age = x years
 - Her father's age = 7x years Then, x + 7x = 648x = 64 $x = \frac{64}{8}$ x = 8

Hence, Sakshi's age = x = 8 years

Her father's age = $7x = 7 \times 8 = 56$ years

10. Let the no. of coins of 2 rupee and 5 rupee be *x* each.

then, 2x + 5x = 707x = 70 $x = \frac{70}{7}$

$$x = \frac{7}{7}$$
$$x = 10$$

Hence, the wallet contains 10 coins of 2 rupee and 5 rupee each.

11. Let the lowest score be x. Then, 2x + 11 = 91 2x = 91 - 11 2x = 80 $x = \frac{80}{2} = 40$ x = 40

Hence, the lowest score in class is 40.

12. Three consecutive natural numbers are

```
x, x + 1, x + 2
               x + x + 1 + x + 2 = 447
     Then,
                          3x + 3 = 447
                              3x = 447 - 3
                              3x = 444
                               x = \frac{444}{3} = 148
                               x = 148
     Hence, Ist number = x = 148
            IInd number = x + 1 = 148 + 1 = 149
           IIIrd number = x + 2 = 148 + 2 = 150
13. Let the side of the square be x m.
     Then, perimeter of square = 4 \times side
                               32 = 4 \times x
                                x = 8
     Hence, the side of the square is 8 cm.
14. Let the numerator of a fraction = x
     and the denominator of the fraction = x + 2
                       \frac{x}{x+2+1} = \frac{1}{2}
     Then,
                          \frac{x}{x+3} = \frac{1}{2}
      or
                           2 \times x = x + 3
      or
                          2x - x = 3
                               x = 3
     Hence,
                     Numerator = x = 3
                  Denominator = x + 2 = 3 + 2 = 5
```

So, fraction is $\frac{3}{5}$.

Chapter 8 : Comparing Quantities

Exercise 8.1

1.	Find the ratio of :	
	(i) ₹ 5 to 75 paise	(ii) 50 cm to 3m
	= ₹ 5:75 paise	$= 50 \mathrm{cm} : 300 \mathrm{cm}$
	= 500 paise : 75 paise	$=\frac{50}{300}$
	$=\frac{500}{75}$	$=\frac{1}{6}$
	$=\frac{20}{3}=20:3$	= 1 : 6
		60

(iii) 35 min to 3 h (iv) 15 m to 25 km $= 35 \min : 3 \times 60 \min$ = 15 m : 25000 m $=\frac{35}{180}$ $=\frac{15}{25000}$ $=\frac{7}{36}=7:36$ $=\frac{3}{5000}=3:5000$ 2. Let Ist part = 7xIInd part = 8x7x + 8x = 1050*.*.. 15x = 1050 $x = \frac{1050}{15}$ x = 70Hence, Ist part = $7x = ₹7 \times 70 = ₹490$ IInd part = 8*x* = ₹ 8 × 70 = ₹ 560 3. Are the following numbers in proportion? (i) 8, 16, 42 (ii) 40, 48, 160, 192 8:16::16:42 40:48::160:192 $\frac{8}{16} = \frac{16}{42}$ $\frac{40}{40} = \frac{160}{100}$ $\overline{48}^{-}$ 192 $\frac{1}{2} = \frac{8}{21}$ $\frac{5}{6} = \frac{5}{6}$ 21 = 1630 = 30LHS = RHS $LHS \neq RHS$ No, these terms are not in proportion. Yes, these terms are in proportion. (iii) 27, 54, 81, 108 27:54::81:108 $\frac{27}{54} = \frac{81}{108}$ $\frac{1}{2} = \frac{3}{4}$ 4 = 6 $LHS \neq RHS$ No, these terms are not in proportion. Which is greater 3:4 or 2:5? **4**. We have $\frac{3}{4}$ $\times \frac{2}{5}$ $3 \times 5 = 4 \times 2$

$$\frac{3}{4} > \frac{2}{5}$$
 Hence, $\frac{3}{4}$ (3 : 4) is greater.

15 > 8

5. Let Ram's share = 2x

Raj's share =
$$4x$$

$$\therefore \qquad 2x + 4x = 120$$
$$6x = 120$$
$$x = \frac{120}{6}$$
$$x = 20$$

Hence, Ram's share = $2x = ₹ 2 \times 20 = ₹ 40$

Raj's share =
$$4x = ₹ 4 \times 20 = ₹ 80$$

Express the following ratios in their simplest form : 6.

(i) 150: 400	(ii) 85:205	(iii) 322 : 84
$=\frac{150}{400}$	$=\frac{85}{205}$	$=\frac{322}{84}$
$=\frac{15}{40}$	$=\frac{17}{41}$	$=\frac{161}{42}$
$=\frac{3}{8}$		$=\frac{23}{6}$

7. Show that the following numbers are in continued proportion :

(i)		7, 14, 28, 56	(ii)	9, 12, 16	
	\Rightarrow	7:14::28:56		\Rightarrow	9:12::12:16
		$\frac{7}{14} = \frac{28}{56}$			$\frac{9}{12} = \frac{12}{16}$
		$\frac{1}{2} = \frac{1}{2}$			$\frac{3}{4} = \frac{3}{4}$

Hence, these terms are in continued proportion. Hence, these terms are in continued proportion.

- 8. Find the mean propirtional between :
 - (i) 5 and 125 Let *x* be the mean proportional between 5 and 125

 $\frac{3}{x} \times \frac{x}{27}$

 $81 = x^2$ $x^2 = 9^2$

x = 9

$$\Rightarrow 5: x:: x = 125 \qquad \Rightarrow 3: x:: x: 27$$

$$\frac{5}{x} \times \frac{x}{125} \qquad \qquad \frac{3}{x} \times \frac{2}{2}$$

$$625 = x^2 \qquad \qquad 81 = x^2$$

$$x^2 = 25^2 \qquad \qquad x^2 = 9^2$$

$$x = 25 \qquad \qquad x = 9$$

Hence, the required mean proportional is 9.

Hence, the required mean proportional is 25.

Find the value of *x* in the following : 9.

(i)
$$7:6 = x: 36$$

 $\Rightarrow \frac{7}{6} \times \frac{x}{36}$
 $\frac{7 \times 36}{6} = x$
(ii) $18:x = 27: 3$
 $\frac{18}{x} \times \frac{27}{3}$
 $x = 42$
(iii) $3:4 = 15: x$
 $\frac{3}{4} \times \frac{15}{x}$
 $3 \times x = 15 \times 4$
 $x = \frac{15 \times 4}{3}$
 $x = 2$
(iv) $x: 50:: 5: 2$
 $\frac{x}{50} \times \frac{5}{2}$
 $x \times 2 = 50 \times 5$
 $x = \frac{50 \times 5}{2}$
 $x = 20$
First term = 7

10. Second term = 14

Third term = 25

Let fourth term be *x* and all these terms are in proportion.

$$\Rightarrow \qquad \begin{array}{c} 7:14::25:x\\ \hline \frac{7}{14} = \frac{25}{x}\\ x = \frac{14 \times 25}{7}\\ x = 50 \end{array}$$

Hence, the required term is 50.

11. Let the fourth proportional be *x*

Then 51:85::57:x $\frac{51}{85} = \frac{57}{x}$ \Rightarrow $x = \frac{85 \times 57}{51}$ $x = \frac{5 \times 57}{3}$ x = 95Hence, the fourth proportional is 95. 12. Income = 7xExpenditure = 6x

We have, income = ₹ 1400

$$7x = 1400$$
$$x = \frac{1400}{7}$$
$$x = 200$$

... If expenditure = $6x = ₹ 6 \times 200 = ₹ 1200$ Then saving = ₹ (1400 – 1200) = ₹ 200 Hence, the saving of the family is ₹ 200 **13.** Let first side of triangle = 2xSecond side of triangle = 3xThird side of triangle = 4xWe have, perimeter of triangle = $45 \,\mathrm{cm}$ 2x + 3x + 4x = 459x = 45 $x = \frac{45}{9}$ x = 5Hence, length of I side = $2x = 2 \times 5 = 10$ cm II side = $3x = 3 \times 5 = 15$ cm III side = $4x = 4 \times 5 = 20$ cm 14. Ratio of the no. of girls to the number of boys in a school = $\frac{5}{2}$ Ratio of the no. of girls to the boys in other school = $\frac{7}{10}$

Now,

$$\frac{5}{8} \times \frac{7}{10}$$
$$50 < 56$$

Hence, second school has higher ratio of girls.

Exercise 8.2

1. The cost of 3 kg of flour = ₹ 78 The cost of 1 kg of flour = ₹ $\frac{78}{3}$

The cost of 15 kg of flour = $\mathbf{E} \frac{78}{3} \times 15$

Hence, the cost of 15 kg of flour is ₹ 390.

2. Distance covered by Raj in 4 hours = 18 km Distance covered by Raj in 1 hour = $\frac{18}{4}$ km Distance covered by Raj in 6 hours = $\frac{18}{4} \times 6$ km

$$=\frac{18\times3}{2}=27\,\mathrm{km}$$

Hence, Raj covers 27 km distance in 6 hours.

3. No. of computers required for 8 students = 4 No. of computers required for 1 student = $\frac{4}{8}$

No. of computers required for 40 students = $\frac{4}{8} \times 40$

= 20 computers

Hence, 20 computers are required for 40 students.

The price of 5 umbrellas = ₹ 2500 4. The price of an umbrella $= \underbrace{\overline{\xi} \frac{2500}{5}}{5}$ The price of 16 umbrellas = $\mathbf{E} \frac{2500}{5} \times 16$ = ₹ 8000 Hence, the cost of 16 umbrellas is ₹ 8000. Amount paid to 16 workers = ₹ 8000 5. Amount paid to 1 worker = $\mathbf{E} \frac{8000}{16}$ Amount paid to 55 workers = ₹ $\frac{8000}{16} \times 55$ =₹ 500 × 55 = ₹ 27500 Hence, ₹ 27500 are paid to 55 workers. 6. 60 persons use rice in = 30 days 1 person will use rice in = $\frac{30}{60}$ days 18 persons will use rice in = $\frac{30}{60} \times 18$

 $=\frac{18}{2}=9\,\mathrm{days}.$

Hence, the rice would last for in 9 days.

7. Speed of a train in 4 hours = 28 km/hr

Distance covered in 4 hrs = Speed \times time

$$= 28 \times 4$$
$$= 112 \text{ km}$$

:. Speed to cover 112 km in 7 hrs

 $=\frac{112}{7}=16$ km/hr

Hence, the speed of train should be 16 km/hr

8. Cost of 25 metres of cloth = ₹ 200 Cost of 1 metre of cloth = ₹ $\frac{200}{25}$ Cost of 10 metres of cloth = ₹ $\frac{200}{25} \times 10$ = ₹ 80

Hence, the cost of 10 metres of cloth is ₹ 80.

9. No. of boxes to pack 600 plates = 15

No. of boxes to pack 1 plate = $\frac{15}{600}$ No. of boxes to pack 1280 plates = $\frac{15}{600} \times 1280$ = $\frac{1280}{40} = 32$

Hence, 32 boxes are required to pack 1280 plates.

10. (i) Time taken by the train to travel 225 km = 3 hours Time taken by the train to travel 1 km = $\frac{3}{225}$ Time taken by the train to travel 375 km = $\frac{3}{225} \times 375$ = 5 hours

Hence, it will take 5 hours to travel 375 km.

(ii) Distance covered by a train in 3 hours = 225 km Distance covered by the train in an hour = $\frac{225}{3}$ km Distance covered by the train in 7 hours = $\frac{225}{3} \times 7 = 525$ km Hence, it will travel 525 km in 7 hours.

Exercise 8.3

- 1. Express the following percent in lowest forms :
 - (i) 5% (ii) $5\frac{1}{4}$ % (iii) 39% $=\frac{5}{100}$ $=\frac{21}{4} \times \frac{1}{100}$ $=\frac{39}{100}$ $=\frac{1}{20}$ $=\frac{21}{400}$

2.	Express the following percent as decimals :						
	(i) :	(i) 33%		7.2%	(iii) 3.25%		
		$=\frac{33}{100}$		$=\frac{7.2}{100}$		$=\frac{3.25}{100}$	
		100		100			
		= 0.33		$=\frac{72}{1000}=0.07$	72	$=\frac{325}{10000}$	
		•••••••••••••••••••••••••••••••••••••••				= 0.0325	
3.		ite the following fraction				F	
	(i)	$6\frac{1}{2}$	(ii)	$\frac{3}{40}$	(iii)	$\frac{5}{7}$	
		$=\frac{13}{2}\times100\%$		$=\frac{3}{40}\times100\%$		$=\frac{5}{7}\times100\%$	
		= 650%		$=\frac{15}{2}\%$		$=\frac{500}{7}\%$	
4.	Coi	nvert each of the following	ng de	ecimals into a	-		
	(i)	0.25	(ii)	0.2	(iii)	0.8	
		$= 0.25 \times 100\%$		$= 0.2 \times 100\%$		$= 0.8 \times 100\%$	
		$=\frac{25}{100} \times 100\%$		$=\frac{2}{10}\times100\%$		$=\frac{8}{10}\times100\%$	
		= 25%		= 20%		= 80%	
5.	Fin	d the value of :					
	(i)	20% of ₹ 1000		(ii)	35% of 5	00 gm	
		= $\frac{20}{100}$ × ₹ 1000			$=\frac{35}{100}\times$	500 gm	
		= ₹ 200			$= 175 \mathrm{gm}$	L	
	(iii)	10% of ₹ 1		(iv)	40% of 1	20 km	
		$=\frac{10}{100}\times100\mathrm{paise}$			$=\frac{40}{100}\times 2$	120 km	
		= 10 paise			$=48\mathrm{km}$		
6.		d the value of <i>x</i> if :				_	
	(i)	20% of x = 50		(ii)	3.5 % of x		
		$\frac{20}{100} \times x = 50$			$\frac{3.5}{100} \times x =$	= 7	
		$x = \frac{50 \times 100}{20}$			<i>x</i> =	$=\frac{7\times1000}{35}$	
		x = 250			<i>x</i> =	$=\frac{1000}{5}$	
					<i>x</i> =	= 200	
				69			

(iii) 5% of x = 0.25(iv) 9% of x = 45 $\frac{9}{100} \times x = 45$ $\frac{5}{100} \times x = 0.25$ $x = \frac{45 \times 100}{9}$ $x = \frac{25 \times 100}{5 \times 100}$ x = 5x = 5007. Total no. of bulbs = 500No. of defective bulbs = 75Percentage of defective bulbs = $\frac{75}{500} \times 100\%$ $=\frac{75}{5}=15\%$ Let *x*% of 40 km be 800 m 8. $\frac{x}{100} \times 40000 \,\mathrm{m} = 800 \,\mathrm{m}$... $x = \frac{100 \times 800}{40000}$ or $x = \frac{8}{4}$ x = 2%Total no. of apples = 2409. No. of rotten apples = $240 \times 5\%$ $= 240 \times \frac{5}{100} = \frac{24}{2} = 12$ No. of good apples = (240 - 12) $= 228 \, \text{apples}$ Total no. of students = 6410. No. of absent students = 16Percentage of absent students = $\frac{16}{64} \times 100\%$ = 25%**11.** Let angles of triangle be x, 2x, 3x $x + 2x + 3x = 180^{\circ}$ $6x = 180^{\circ}$ $x = 30^{\circ}$ Hence, I angle = $x = 30^{\circ}$ II angle = $2x = 2 \times 30 = 60^{\circ}$ III angle = $3x = 3 \times 30 = 90^{\circ}$

12. Total marks = 600

Ishita scored = 62%

Then marks obtained by Ishita = $600 \times 62\%$

$$= 600 \times \frac{62}{100} = 372 \text{ marks}$$

13. Increase number = (125 - 80) = 45

Increase percentage = $\frac{45}{125} \times 100\%$

$$=\frac{45 \times 4}{5} = 36\%$$

- 14. Find the percentage increase or decrease :
 - (i) No. of students increased from 2000 to 2160 Increase in number = (2160 - 2000) = 160Increase percentage = $\frac{160}{2160} \times 100\%$ = $\frac{200}{27}\%$

$$= \frac{530}{330} \%$$

$$=\frac{330}{33}\%$$

15. Total no. of students = 3000

No. of girls =
$$3000 \times \frac{40}{100} = 1200$$

Then no. of boys = (3000 - 1200) = 1800

No. of boys won the prizes = $1800 \times \frac{10}{100} = 180$ No. of girls won the prizes = $1200 \times \frac{12}{100} = 144$

:. Total no. of students won the prizes = (180 + 144) = 324

Percentage of total no. of students who won the prizes = $\frac{324}{3000} \times 100\%$ = $\frac{324}{2000} = 10.8\%$

$$=\frac{324}{30}=10.8\%$$

16. Quantity of water in a tank = 600 litres

Added water in the tank = 120 litres

:. Total quantity of water = (600 + 120) = 720 litres

Percentage increase in amount of water = $\frac{120}{600} \times 100\% = \frac{120}{6} = 20\%$

Seeta's income = ₹ 12000Seeta's expenditure ₹ 8000

Percentage of spent money = $\frac{8000}{12000} \times 100\%$ = $\frac{800}{12}$ = 66.67%

18. Let the required sum be *x*.

30% of x = ₹ 270

$$\frac{30}{100} \times x = ₹ 270$$

 $x = \frac{270 \times 100}{30}$
 $x = 900$

Hence, the required sum is ₹ 900.

Exercise 8.4

Find the unknown value of each of the following :
 (i) CP = ₹ 500, SP = ? Profit = ₹ 120

$$SP = CP + Profit$$

= ₹ (500 + 120)
= ₹ 620
(ii) $CP = ₹ 700, SP = ₹ 665, Loss = ?$
Loss = $CP - SP$
= ₹ (700 - 665)
= ₹ 35
(iii) $CP = ?, SP = ₹ 360, Profit = ₹ 60$
 $CP = SP - Profit$
= ₹ (360 - 60) = ₹ 300
(iv) $CP = ₹ 4000, SP = ₹ 3000, Loss = ?$
Loss = $CP - SP$
= ₹ (4000 - 3000)
= ₹ 1000
2. Calculate profit or loss percentage for the following :
(i) $CP = ₹ 2000, SP = ₹ 2500$
Here $SP > CP$
Profit = $(SP - CP)$
= ₹ (2500 - 2000)
= ₹ 500

Profit % =
$$\frac{P}{CP} \times 100\%$$

= $\frac{500}{2000} \times 100\%$
= 25%
(ii) $CP = ₹ 1060, SP = ₹ 1000$
Here $CP > SP$
Loss = ₹ (1060 - 1000)
= ₹ 60
Loss % = $\frac{Loss}{CP} \times 100\%$
= $\frac{60}{1060} \times 100\%$
= $\frac{60 \times 10}{106} \%$
= $\frac{300}{53} \%$
= $5 \frac{35}{53} \%$
 CP of an article = ₹ 360
 SP of the article = ₹ 270
Here, $CP > SP$

Loss = (CP - SP)
= ₹ (360 - 270) = ₹ 90
Loss% =
$$\frac{\text{Loss}}{CP} \times 100\%$$

= $\frac{90}{360} \times 100\%$
= $\frac{10 \times 10}{4} = 25\%$

3.

4. *CP* of a computer table = ₹ 2200

Profit = 20%
Profit =
$$2200 \times \frac{20}{100} = 440$$

 $\therefore \qquad SP = CP + P$
 $= \overline{\langle} (2200 + \overline{\langle} 440)$
 $= \overline{\langle} 2640$

Let *CP* of each article = $\mathbf{E} \mathbf{x}$ 5. *CP* of 10 articles = ₹ 10*x* SP of 10 articles = CP of 11 articles= 11xP = SP - CP= 11x - 10x= x $P\% = \frac{P}{CP} \times 100 = \frac{x}{10r} \times 100 = 10\%$ *.*.. *SP* of an article = ₹ 950 **6**. Loss % = 5%SP = CP - Loss950 = CP - 5% of CP $950 = CP - \frac{5}{100} \times CP$ $950 = CP - 0.05 \times CP$ $950 = 0.95 \times CP$ $CP = \frac{950}{0.95} = 1000$ ₹ *.*.. *CP* of a car = ₹ 70000 7. Spent on painting = ₹ 5000 *.*.. Total *CP* = ₹ (70000 + 5000) = ₹ (75000) *SP* = ₹ 67500 Here, CP > SPLoss = (CP - SP)= ₹ (75000 - 67500) =₹7500 Loss % = $\frac{\text{Loss}}{\text{Total CP}} \times 100\%$ *:*.. $=\frac{7500}{75000}\times100=10\%$ 8. Cost of a dozen eggs = ₹ 36 Cost of 5 dozen eggs = $\frac{36}{12} \times 60$ = ₹ 180 Broken eggs = $60 \times 5\%$ $= 60 \times \frac{5}{100} = 3$ Remaining eggs = (60 - 3) = 57 eggs SP of 12 eggs = 48SP of 57 eggs = $\frac{48}{12}$ × 57 = ₹ 228

Profit = SP - CP*.*.. = ₹ (228 - 180) =₹48 S.P. of two machines at ₹ 2400 each 9. On selling one machines, his gain = 20% $CP = \frac{2400 \times 100}{120} = ₹ 2000$ Then, Gain = 2400 - 2000 = ₹ 400 Now, on selling second machines, his loss% = 20%Then, $CP = \frac{2400 \times 100}{80} = ₹ 3000$ Loss = 3000 - 2400 = ₹ 600 His net loss = ₹ (600 - 400) =₹200 Loss % = $\frac{\text{Loss}}{\text{Total } CP} \times 100$ $=\frac{200}{4800} \times 100 = 4\frac{1}{6}\%$ **10.** S.P. of an item = ₹ 540 Loss % = 5%Loss = $540 \times \frac{5}{100} = \frac{54}{2} = ₹ 27$ C.P. = SP + Loss= ₹ (540 + 27) =₹ 567

Exercise 8.5

1. Calculate the interest and the amount in each of the folloiwng cases :

$$P = ₹ 2500, R = 9\%, T = 2 \text{ years}$$
$$SI = \frac{P \times R \times T}{100}$$
$$= \frac{2500 \times 9 \times 2}{2} = ₹ 450$$

Amount = P + SI

(b)

(a

...

$$P = ₹ 10000, R = 5\%, T = 4 \text{ years}$$
$$SI = \frac{P \times R \times T}{100}$$

...

$$=\frac{100}{1000 \times 5 \times 4} = ₹ 2000$$

Amount = P + SI

= ₹ (10000 + 2000) = ₹ 12000

(c)
$$P = ₹ 2575, R = 10\%, T = 5$$
 years
 $SI = \frac{P \times R \times T}{100}$
 $= \frac{2575 \times 10 \times 5}{100}$
 $= \frac{2575}{2} = ₹ 1287.5$
Amount = $P + SI$

$$Amount = P + SI$$

(d)
$$P = ₹ 1500, R = 6.5 \%, T = 3 \text{ years}$$

 $SI = \frac{P \times R \times T}{100}$
 $= \frac{1500 \times 6.5 \times 3}{100} = ₹ 292.5$

Amount = P + SI

- Find the principal in each of the following cases : 2.
 - SI = ₹ 360, T = 5 years, R = 6%(a) $P \vee P \vee T$

$$SI = \frac{P \times R \times T}{100}$$
$$P = \frac{SI \times 100}{R \times T}$$
$$= \frac{360 \times 100}{6 \times 5} = ₹ 1200$$

SI = ₹ 2304, T = 4 years, R = 12%(b) $P = \frac{SI \times 100}{R \times T}$ $=\frac{2304\times100}{12\times4}$

Find the rate of interest in each of the following cases : 3.

(a)
$$I = ₹ 288, P = ₹ 960, T = 2 \text{ years}$$

$$R = \frac{SI \times 100}{P \times T}$$
$$= \frac{288 \times 10}{960 \times 2} = \frac{288 \times 5}{96}$$
$$= 15\%$$

(b)
$$I = \overline{\mathbf{x}} \ 40, P = \overline{\mathbf{x}} \ 200, T = 4 \text{ years}$$

 $R = \frac{SI \times 100}{P \times T}$
 $= \frac{40 \times 100}{200 \times 4} = \frac{10}{2} = 5\%$
4. (a) $P = \overline{\mathbf{x}} \ 3000, I = \overline{\mathbf{x}} \ 60, R = 4\%$
 $T = \frac{SI \times 100}{P \times R}$
 $= \frac{60 \times 100}{3000 \times 4} = \frac{60}{30 \times 4} = \frac{15}{30}$
 $= \frac{1}{2} \text{ years or 6 months}$
(b) $P = \overline{\mathbf{x}} \ 6000, I = \overline{\mathbf{x}} \ 720, R = 3\%$
 $T = \frac{SI \times 100}{P \times R}$
 $= \frac{720 \times 100}{6000 \times 3} = \frac{12}{3} = 4 \text{ years}$
5. $T = ?, P = \overline{\mathbf{x}} \ 2000, I = \overline{\mathbf{x}} \ 560$
 $R = 14\%$
 $\therefore SI = \frac{P \times R \times T}{100}$
 $T = \frac{SI \times 100}{P \times R} = \frac{560 \times 100}{2000 \times 14} = \frac{56}{28}$
 $= 2 \text{ years}$
6. $P = \overline{\mathbf{x}} \ 1400, R = 8\%, T = 2 \text{ years}$
Amount = ?
 $SI = \frac{P \times R \times T}{100}$
 $= \frac{1400 \times 8 \times 2}{100} = \overline{\mathbf{x}} \ 224$
Amount = $P + SI$
 $= \overline{\mathbf{x}} \ (1400 + 224) = \overline{\mathbf{x}} \ 1624$
Hence, Swati paid $\overline{\mathbf{x}} \ 1624$ back to her friend.
7. $T = 1 \text{ year}, R = 12\%, I = \overline{\mathbf{x}} \ 4800$
 $P = ?$
 $P = \frac{SI \times 100}{R \times T}$
 $= \frac{4800 \times 100}{R \times T} = \overline{\mathbf{x}} \ 40000$

$$=\frac{4800 \times 100}{12 \times 1} = ₹ 4000$$

8.
$$R = ?, I = \overline{\mathbf{x}} 238, P = \overline{\mathbf{x}} 595, T = 6$$
 years
 $R = \frac{SI \times 100}{P \times T}$
 $= \frac{238 \times 100}{595 \times 6} = \frac{238 \times 20}{119 \times 6}$
 $= \frac{20}{3} = 6\frac{2}{3}\%$
9. $I = ?, A = ?, P = \overline{\mathbf{x}} 4500, R = 8\%, T = 3$ years
 $I = \frac{P \times R \times T}{100}$
 $= \frac{4500 \times 8 \times 3}{100} = \overline{\mathbf{x}} 1080$
 \therefore Amount = $P + SI$
 $= (4500 + 1080) = \overline{\mathbf{x}} 5580$
10. $A = \overline{\mathbf{x}} 44000, R = 5\%, T = 2$ years
Amount = $P + SI$
 $44000 = P + \frac{P \times R \times T}{100}$
 $44000 = P \left[1 + \frac{R \times T}{100}\right]$
 $44000 = P \left[1 + \frac{5 \times 2}{100}\right]$
 $44000 = P \left[1 + \frac{10}{100}\right]$
 $44000 = P \left[\frac{100 + 10}{100}\right]$
 $44000 = P \times \frac{110}{100}$
 $44000 = P \times \frac{110}{11}$
 $P = \overline{\mathbf{x}} 40,000$
Now, $A = ?, R = 5\%, T = 3$ years

w,
$$A = ?$$
, $R = 5\%$, $T = 3$ years

$$SI = \frac{P \times R \times T}{100} = \frac{40000 \times 5 \times 3}{100}$$

$$= ₹ 6000$$
Amount = $P + SI$

$$= ₹ 40000 + 6000$$

.:.

= ₹ (40000 + 6000) = ₹ 46000

11. T = ?, A = 2P, R = 10%Amount = P + SI $A = P + \left[\frac{P \times R \times T}{100}\right]$ $2P = P\left[1 + \frac{R \times T}{100}\right]$ $2 = 1 + \frac{10 \times T}{100}$ $2 - 1 = \frac{10T}{100}$ $1 = \frac{T}{10}$

$$T = 10$$
 years

12. In which case, the interest earned is more :

(a)
$$P = \overline{\mathbf{x}} 5000, T = 5$$
 years, $R = 4\%$

$$SI = \frac{P \times R \times T}{100}$$

$$= \frac{5000 \times 4 \times 5}{100} = \overline{\mathbf{x}} 1000$$
(b) $P = \overline{\mathbf{x}} 4000, T = 6$ years, $R = 5\%$
 $SI = \frac{P \times R \times T}{100}$

$$= \frac{4000 \times 5 \times 6}{100} = \overline{\mathbf{x}} 1200$$
Hence, in second case the interact is of

Hence, in second case the interest is earned more.

Chapter 9 : Lines and Angles

Exercise 9.1

- 1. Find the complement of the following angles :
 - (i) 25° Complement angle = $90 25^{\circ} = 65^{\circ}$
 - (ii) 36° Complement angle = $90 36^{\circ} = 54^{\circ}$
 - (iii) 75° Complement angle = $90 65^{\circ} = 25^{\circ}$
 - (iv) 63° Complement angle = $90 63^{\circ} = 27^{\circ}$
- 2. Find the supplement of the following angles :
 - (i) 90° Supplement angle = $180^{\circ} 90^{\circ} = 90^{\circ}$
 - (ii) 130° Supplement angle = $180^{\circ} 130^{\circ} = 50^{\circ}$
 - (iii) 168° Supplement angle = $180^{\circ} 168^{\circ} = 12^{\circ}$
 - (i) 108° Supplement angle = $180^{\circ} 108^{\circ} = 72^{\circ}$
- 3. Identify, which of the following pairs of angles are complementary or supplementary :
 - (i) 40° and 140° (ii) 85° and 5°

 $Sum = 40^{\circ} + 140^{\circ}$ $Sum = 85^\circ + 5^\circ$ $= 180^{\circ}$ $= 90^{\circ}$ So, it is a pair of supplementary angles. So, it is a pair of complementary angles. (iii) 34° and 56° (iv) 136° and 44° $Sum = 136^{\circ} + 44^{\circ}$ $Sum = 34^\circ + 56^\circ$ $= 90^{\circ}$ $= 180^{\circ}$ So, it is a pair of complementary angles So, it is a pair of supplementary angles. 4. Let angle be *x* Its complement = 90 - x $x = 2(90^{\circ} - x)$ Then. $x = 180^{\circ} - 2x$ or $x + 2x = 180^{\circ}$ or $3x = 180^{\circ}$ or $x = \frac{180^{\circ}}{3} = 60^{\circ}$ *.*.. 5. Let angle be x6. Let first angle be 4xIts supplement = $180^{\circ}-x$ and second angle be 5xThen, $x = 180^{\circ} - x$ Then, $4x + 5x = 180^{\circ}$ $x + x = 180^{\circ}$ or $9x = 180^{\circ}$ $x = \frac{180^{\circ}}{9}$ or x = 20 $2x = 180^{\circ}$ or $x = \frac{180^{\circ}}{2}$ Hence, first angle = $4x = 4 \times 20^\circ = 80^\circ$ Second angle = $5x = 5 \times 20^{\circ} = 100^{\circ}$ $x = 90^{\circ}$ Find the value of *x* in each of the following figures : 7. $3x + 2x = 180^{\circ}$ (linear pair property) (ii) $7x^{\circ} + 2x^{\circ} = 180^{\circ}$ (linear pair property) (i) $5x = 180^{\circ}$ $9x = 180^{\circ}$ $x = \frac{180^{\circ}}{9}$ $x = \frac{180^{\circ}}{5}$ $x = 36^{\circ}$ $x = 20^{\circ}$ (iii) $(3x + 10^\circ) + (2x + 5^\circ) = 180^\circ$ (l.p.p.) (iv) $x + 80^\circ + x = 180^\circ$ (Straight line) $5x + 15^\circ = 180^\circ$ $2x + 80^\circ = 180^\circ$ $5x = 180^{\circ} - 15^{\circ}$ $2x = 180^{\circ} - 80^{\circ}$ $5x = 165^{\circ}$ $2x = 100^{\circ}$ $x = \frac{165^{\circ}}{5}$ $x = \frac{100^{\circ}}{2}$ $x = 33^{\circ}$ $x = 50^{\circ}$ (v) $x + 2x + 3x + 4x = 180^{\circ}$ (straight line) (vi) $2x + x = 90^{\circ}$ (right angle) $10x = 180^{\circ}$ $3x = 90^{\circ}$ $x = \frac{180^{\circ}}{10}$ $x = \frac{90^{\circ}}{3}$ $x = 18^{\circ}$ $x = 30^{\circ}$

8. In the given figure, name the following pairs of angles : (i) $\angle XOP$ and $\angle YOQ$ (ii) $\angle SOQ$ and $\angle ROQ$ (iii) $\angle ROX$ and $\angle XOP$ (iv) $\angle QOR$ and $\angle ROP$ (v) $\angle POX$ and $\angle XOR$ 9. Let an angle = xIts supplement = $180^{\circ}-x$ $x - (180^{\circ} - x) = 30^{\circ}$ then, $x - 180^{\circ} + x = 30^{\circ}$ $2x = 30^{\circ} + 180^{\circ}$ $2x = 210^{\circ}$ $x = \frac{210^{\circ}}{2} = 105^{\circ}$ Hence, Ist angle = $x = 105^{\circ}$ IInd angle = $180^{\circ} - x = 180^{\circ} - 105^{\circ} = 75^{\circ}$ **10.** Let an angle be x. Its complement = $90^{\circ}-x$ We have, $90 - x = 25^{\circ}$ 90 - 25 = x65 = xNow, supplement of $65^\circ = 180^\circ - 65^\circ$ $= 105^{\circ}$ 11. In the figure, if $\angle 1 = 35^\circ$, find $\angle 2$, $\angle 3$ and $\angle 4$. We have, $\angle 1 = 35^{\circ}$ $\angle 2 = 180^{\circ} - 35^{\circ}$ (linear pair) then. $\angle 2 = 145^{\circ}$ $\angle 3 = \angle 1 = 35^{\circ}$ Now, (Vertically opposite angles) $\angle 4 = \angle 2 = 145^{\circ}$ (Vertically opposite angles) and

12. No, in the given figure $\angle ABC$ and $\angle BCD$ do not form a pair of adjacent angles, because they have no common vertex.

Exercise 9.2

- **1.** Line *l* is the transversal to the lines *m* and *n*. Identify the following :
 - (i) $\angle a$ and $\angle e$, $\angle d$ and $\angle h$, $\angle b$ and $\angle f$, $\angle c$ and $\angle g$ (ii) $\angle c$ and $\angle e$, $\angle f$ and $\angle d$
 - (iii) $\angle a$ and $\angle g$, $\angle h$ and $\angle b$ (iv) $\angle c$ and $\angle f$, $\angle d$ and $\angle e$
 - (v) $\angle b$ and $\angle g$, $\angle a$ and $\angle h$

2. Find the value of x in the following figures, if $c \parallel d$:

(i) $x + 115^\circ = 180^\circ$ (sum of co-interior angles is 180°)

 $x=180^\circ-115^\circ$

$$x = 65^{\circ}$$

(ii) $x + 98^\circ = 180^\circ$ (linear pair property) $x = 180^\circ - 98^\circ$ $x = 82^\circ$

	(iii) $x + 130^\circ = 180^\circ$ (linear pair p	property) (iv) $x + 54^\circ = 180^\circ$ (linear pair property)
	$x = 180^{\circ} - 130^{\circ}$	$x = 180^{\circ} - 54^{\circ}$
	$x = 50^{\circ}$	$x = 126^{\circ}$
3.	In the given figure, check wheth (i) $61^{\circ} + 61^{\circ} = 122^{\circ}$	her $p \parallel q$:
	$\neq 180^{\circ}$	
	So, $p \text{ and } q$ are not para	allel.
	(ii) $53^\circ + 127^\circ = 180^\circ$	
	$\Rightarrow \qquad p \parallel q$	
	(iii) $99^\circ + 81^\circ = 180^\circ$	
	$\Rightarrow \qquad p \parallel q$	
	(iv) $110^\circ + 120^\circ = 230^\circ$	
	\neq 180° So <i>p</i> and <i>q</i>	are not parallel.
4.	$\angle PQR = \angle BPQ + QRD$ $= 20^{\circ} + 30^{\circ}$	
	$= 50^{\circ}$	
5.	$\angle 1 = 180^{\circ} - 70^{\circ}$ = 110°	(linear pair)
	$\angle 3 = \angle 1 = 110^{\circ}$	(vertically opposite angles)
	$\angle 2 = 70^{\circ}$	(vertically opposite angles)
	$\angle 4 = \angle 1 = 110^{\circ}$	(corresponding angles)
	$\angle 5 = \angle 2 = 70^{\circ}$	(corresponding angles)
	$\angle 6 = \angle 3 = 110^{\circ}$	(corresponding angles)
	$\angle 7 = 70^{\circ}$	(corresponding angles)
6.	$\angle y = 180^{\circ} - 43^{\circ}$ $= 137^{\circ}$	(linear pair)
	$\angle x = 43^{\circ}$	(alternate interior angles)
	$\angle z = \angle x = 43^{\circ}$	(vertically opposite angles)
7.	In the following figure, if $q \parallel r$,	
	Since $q \parallel r$ and p is a transvers 8t - 21 = 15 - 10t	al, (alternate exterior angles)
	8t + 10t = 15 + 21	(anternate exterior angles)
	18t = 36	
	$t = \frac{36}{18}$	
	t = 2	

8. In the given figure, $AB \parallel DC$ and $AD \parallel BC$. Find the value of x and y: Since $AD \parallel BC$ (alternate interior angles)

$\angle y = 60^{\circ}$	(alternate interior angles)
$\angle x = 40^{\circ}$	(alternate interior angles)

Chapter 10 : Triangles and their Properties

Exercise 10.1

1. Find the value of unknown angles in the following figures :

(i) by angle sum property of a triangle $\angle A + \angle B + \angle C = 180^{\circ}$ $x + 70^{\circ} + 60^{\circ} = 180^{\circ}$ $x + 130^{\circ} = 180^{\circ}$ $x = 180^{\circ} - 130^{\circ}$ $x = 50^{\circ}$ (ii) by angle sum property of a triangle $\angle D + \angle E + \angle F = 180^{\circ}$ $90^{\circ} + 30^{\circ} + x = 180^{\circ}$ $120^{\circ} + x = 180^{\circ}$ $x = 180^{\circ} - 120^{\circ}$ $x = 60^{\circ}$ (iii) by angle sum property of a triangle

(iii) by angle sum property of a triangle (iv) by angle sum property of a triangle

$$\angle P + \angle Q + \angle R = 180^{\circ} \qquad \qquad \angle L + \angle M + \angle N = 180^{\circ} \\ x + x + x = 180^{\circ} \qquad \qquad x + 115^{\circ} + 30^{\circ} = 180^{\circ} \\ 3x = 180^{\circ} \qquad \qquad x + 145^{\circ} = 180^{\circ} \\ x = \frac{180^{\circ}}{3} \qquad \qquad x = 180^{\circ} - 145^{\circ} \\ x = 60^{\circ} \qquad \qquad x = 35^{\circ}$$

(v) $\angle x = 74^{\circ}$ (Vertically opposite angles)

Now, by angle sum property of a triangle

$$x + 40^{\circ} + y = 180^{\circ}$$

$$74^{\circ} + 40^{\circ} + y = 180^{\circ}$$

$$114^{\circ} + y = 180^{\circ}$$

$$y = 180^{\circ} - 114^{\circ}$$

$$y = 166^{\circ}$$

2. If first angle of a triangle = 40° Second angle of the triangle = 70°

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (by angle sum property of a \triangle)

then,

3.

 $40^{\circ}+70^{\circ}+\angle C = 180^{\circ}$ $110^{\circ}+\angle C = 180^{\circ}$ $\angle C = 180^{\circ}-110^{\circ}$

$$LC = 100 = 1$$

$$\angle C = 70^{\circ}$$

Hence, third angle of the triangle is 70°

Let first angle of a triangle = 2x

Second angle of the triangle = 3x

Third angle of the triangle = 4x

By angle sum property of a triangle

 $\angle A + \angle B + \angle C = 180^{\circ}$

- $2x + 3x + 4x = 180^{\circ}$ or $9x = 180^{\circ}$
- $\therefore \qquad \qquad x = \frac{180^{\circ}}{9}$

 $x = 20^{\circ}$ Hence, I angle = $2x = 2 \times 20^{\circ} = 40^{\circ}$ II angle = $3x = 3 \times 20^{\circ} = 60^{\circ}$ III angle = $4x = 4 \times 20^{\circ} = 80^{\circ}$

4. Let the smallest angle of the triangle = x second angle of the triangle = 4x third angle of the triangle = 5x

By angle sum property of a Δ ,

$$\angle A + \angle B + \angle C = 180^{\circ}$$
$$x + 4x + 5x = 180^{\circ}$$
$$10x = 180^{\circ}$$
$$x = \frac{180^{\circ}}{10}$$
$$x = 18^{\circ}$$

Hence, the smallest angle = $x = 18^{\circ}$ Second angle = $4x = 4 \times 18^\circ = 72^\circ$ Third angle = $5x = 5 \times 18^\circ = 90^\circ$ In right angled triangle $\angle A = 90^{\circ}$ 5. $\angle B = 2x$, Let $\angle C = 3x$ By angle sum property of a Δ , $\angle A + \angle B + \angle C = 180^{\circ}$ $90^{\circ} + 2x + 3x = 180^{\circ}$ $5x = 180^{\circ} - 90^{\circ}$ $5x = 90^{\circ}$ $x = \frac{90^{\circ}}{5}$ $x = 18^{\circ}$ Hence, $\angle B = 2x = 2 \times 18^\circ = 36^\circ$ $\angle C = 3x = 3 \times 18^\circ = 54^\circ$ We have, $\angle A = \angle B + \angle C$ 6. Now, by angle sum property of a Δ , $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle A + \angle A = 180^{\circ}$

or ∴

- $2\angle A = 180^{\circ}$ $\angle A = \frac{180^{\circ}}{2}$
 - $\angle A = 90^{\circ}$
- 7. We have, in $\triangle ABC$

 $\angle A = 100^{\circ} \text{ and } \angle B = \angle C = x \text{ (let)}$

By angle sum property of a Δ ,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$100^{\circ} + x + x = 180^{\circ}$$

$$2x = 180^{\circ} - 100^{\circ}$$

$$2x = 80^{\circ}$$

$$x = \frac{80^{\circ}}{2}$$

$$x = 40^{\circ}$$
Hence, equal angles $\angle B = \angle C = x = 40^{\circ}$
Since $DE / / BC$,
 $\therefore \qquad \angle x = 30^{\circ}$ (corresponding angles)
Now, in $A 4 DE$ by angle sum property of a A

Now, in $\Delta\!ADE$ by angle sum property of a Δ ,

$$\angle A + \angle D + \angle E = 180^{\circ} 40^{\circ} + x + z = 180^{\circ} 40^{\circ} + 30^{\circ} + z = 180^{\circ} 70^{\circ} + z = 180^{\circ} z = 180^{\circ} - 70^{\circ} z = 110^{\circ}$$

:.

8.

 $\angle y = \angle z = 110^{\circ}$ (corresponding angles)

- **9.** (i) Yes, sum of the three angles of a triangle is 180°. If one of the angles is obtuse then the other two are less than 90° (acute angles).
 - No, obtuse angle is greater than 90° and as sum of three angles is equal to 180°. So, two angles can never be 90° or grater than 90°.
 - (iii) No, if all angles are less than 60° each then their sum will be less than 180° which is not possible in a triangle.
 - (iv) No, because sum of three angles is 180°. So two angles can never be 90° or greater 90°.
- **10.** Find the unknown angles in the following figures :

(i) In $\triangle ADC$, $\angle A + \angle D + \angle C = 180^{\circ}$ (by angle sum property of a \triangle) $45^{\circ} + x + 60^{\circ} = 180^{\circ}$ $x + 105^{\circ} = 180^{\circ} x = 180^{\circ} - 105^{\circ}$ $x = 75^{\circ}$ $\therefore y + x = 180^{\circ}$ (linear pair property)

 $y + 75^{\circ} = 180^{\circ}$ $y = -75^{\circ} = 180^{\circ}$ $\gamma = 105^{\circ}$ Now, In $\triangle ABD$ $\angle A + \angle B + \angle D = 180^{\circ}$ (by angle sum property of a Δ) $z + 40^{\circ} + v = 180^{\circ}$ $z + 40^{\circ} + 105^{\circ} = 180^{\circ}$ $z + 145^{\circ} = 180^{\circ}$ $z = 180^{\circ} - 145^{\circ}$ $z = 35^{\circ}$ (ii) In ΔPQR $\angle P + \angle Q + \angle R = 180^{\circ}$ (by angle sum property of a Δ) $x + 90^{\circ} + 20^{\circ} = 180^{\circ}$ $x + 110^{\circ} = 180^{\circ}$ $z = 180^{\circ} - 110^{\circ}$ $z = 70^{\circ}$ Now, $\gamma = 20^{\circ}$ (Vertically opposite angles) $u + 20^{\circ} = 180^{\circ}$ $u = 180^{\circ} - 20^{\circ}$ $u = 160^{\circ}$ and $v = u = 160^{\circ}$ 11. In $\triangle ACE$, $\angle A + \angle C + \angle E = 180^{\circ}$ (by angle sum property of a Δ) In $\triangle BDF$, ...(1) $\angle B + \angle D + \angle F = 180^{\circ}$ (by angle sum property of a Δ) ...(2) On adding the corresponding parts of (1) and (2), we get, $\angle A + \angle C + \angle E + \angle B + \angle D + \angle F = 180^{\circ} + 180^{\circ}$ $\angle A + \angle C + \angle E + \angle B + \angle D + \angle F = 360^{\circ}$ \Rightarrow **12.** We have, in a $\triangle ABC$ $\angle A = \angle B = 2 \angle C$ by angle sum property of a Δ , $\angle A + \angle B + \angle C = 180^{\circ}$ $2 \angle C + 2 \angle C + \angle C = 180^{\circ}$ $5 < = 180^{\circ}$ $\angle C = \frac{180^{\circ}}{5}$ $\angle C = 36^{\circ}$ $\angle A = \angle B = 2 \angle C = 2 \times 36^{\circ} = 72^{\circ}$...

Exercise 10.2

- 1. Are the following figures correct ? Give reasons for your answers :
 - (i) Yes, external angle = sum of the interior opposite angles

 $110^{\circ} = 50^{\circ} + 60^{\circ}$

 $110^{\circ} = 110^{\circ}$

(ii) No, external angle \neq sum of the interior opposite angles

 $100^\circ \neq 55^\circ + 40^\circ$

 $100^{\circ} \neq 95^{\circ}$

(iii) Yes, external angle = sum of the interior opposite angles

 $120^{\circ} = 50^{\circ} + 70^{\circ}$

 $120^\circ = 120^\circ$

- 2. Find angle *x* in the following figures :
 - (i) Exterior angle = sum of the interior opp. angles

$$115^\circ = x + 35^\circ$$
$$x = 115^\circ - 35^\circ$$
$$x = 80^\circ$$

(ii) Exterior angle = sum of the interior opp. angles

 $108^\circ = x + 50^\circ$ $x = 108^\circ - 50^\circ$ $x = 58^\circ$

(iii) Exterior angle = sum of the interior opp. angles

$$x = 90^{\circ} + 30^{\circ}$$
$$x = 120^{\circ}$$

(iv) Exterior angle = sum of the interior opp. angles

$$120^{\circ} = x + x$$
$$120^{\circ} = 2x$$
$$x = \frac{120^{\circ}}{2}$$
$$x = 60^{\circ}$$

3. Exterior angle of a $\Delta = 110^{\circ}$

One of its interior opposite angles = 60°

then, exterior angle = sum of the interior opposite angles

$$110^{\circ} = 60^{\circ} + x$$
$$x = 110^{\circ} - 60^{\circ}$$
$$x = 50^{\circ}$$

Hence, the measure of other interior opposite angle is 50°

4. If exterior angle of a $\Delta = 80^{\circ}$ and other two interior opp. angles are 3x and 5xthen, exterior angle = sum of the interior opp. angles $80^\circ = 3x + 5x$ $80^{\circ} = 8x$ or $x = \frac{80^{\circ}}{8}$ or $x = 10^{\circ}$ Hence, the measure of two interior opp. angles $= 3x = 3 \times 10^{\circ} = 30^{\circ}$ $= 5x = 5 \times 10^{\circ} = 50^{\circ}$ and 5. If $\angle ACD = 115^{\circ}$ then by exterior angle = sum of the interior opp. angles $\angle ACD = \angle ABC + \angle CAB$ $115^\circ = 95^\circ + \angle CAB$ $\angle CAB = 115^{\circ} - 95^{\circ}$ $\angle CAB = 20^{\circ}$ $\angle CAE = 180^{\circ} - CAB$ (linear pair property) *.*.. $= 180^{\circ} - 20^{\circ}$ $\angle CAE = 160^{\circ}$ 6. In the figure, $y + 70^\circ = 180^\circ$ (linear pair property) $y = 180^{\circ} - 70^{\circ}$ $y = 110^{\circ}$ Now, in *CAB*, by angle sum property of a Δ , $\angle A + \angle C + \angle B = 180^{\circ}$ $40^{\circ} + \angle C + \gamma = 180^{\circ}$ $40 + \angle C + 110^{\circ} = 180^{\circ}$ $150^{\circ} + \angle C = 180^{\circ} - 150^{\circ}$ $\angle C = 30^{\circ}$ $x = 180^{\circ} - \angle ACB$ (linear pair property) $= 180^{\circ} - 30^{\circ}$ $x = 150^{\circ}$ 7. In ΔPQR $\angle PQR = 180^{\circ} - 120^{\circ}$ (linear pair property) $= 60^{\circ}$ $\angle PRT = 180^{\circ} - 130^{\circ}$ (linear pair property) and $= 50^{\circ}$ Now, in ΔPQR by angle sum property of a Δ , $\angle P + \angle Q + \angle R = 180^{\circ}$ $\angle P + 60^{\circ} + 50^{\circ} = 180^{\circ}$ $\angle P = 180^{\circ} - 110^{\circ}$ $\angle P = 70^{\circ}$

8. In the given figure,

$$\angle BCA = 50^{\circ}, \angle ADB = 80^{\circ}$$

and $\angle A = 4\angle ABD$

In $\triangle ABD$ by angle sum property of a \triangle ,

$$\angle ABD + \angle BAD + \angle BDA = 180^{\circ}$$
$$\angle ABD + 4\angle ABD + 80^{\circ} = 180^{\circ}$$
$$5\angle ABD = 180^{\circ} - 80^{\circ}$$
$$5\angle ABD = 100^{\circ}$$
$$\angle ABD = \frac{100^{\circ}}{5}$$
$$\angle ABD = 20^{\circ}$$
$$\angle A = 4\angle ABD$$
$$= 4 \times 20^{\circ} = 80^{\circ}$$

and

 $\angle A = 80^{\circ}$

Now, in $\triangle ABC$ by angle sum property of a \triangle ,

$$\angle A + \angle B + \angle C = 180^{\circ}$$
$$80^{\circ} + \angle B + 50^{\circ} = 180^{\circ}$$
$$130^{\circ} + \angle B = 180^{\circ}$$
$$\angle B = 180^{\circ} - 130^{\circ}$$
$$\angle B = 50^{\circ}$$
$$\angle ABC = 50^{\circ}$$

Hence,

9. If in isosceles $\triangle ABC$, AB = AC

$$\Rightarrow$$

 $\angle B = \angle C = 45^{\circ}$ (Given)

then by angle sum property of a Δ ,

$$\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$$

$$45^{\circ} + \angle BAC + 45^{\circ} = 180^{\circ}$$

$$\angle BAC + 90^{\circ} = 180^{\circ}$$

$$\angle BAC = 180^{\circ} - 90^{\circ}$$

$$\angle BAC = 90^{\circ}$$

$$x = \angle DAC$$

$$= 180^{\circ} - \angle BAC \quad \text{(linear pair)}$$

$$= 180^{\circ} - 90^{\circ}$$

$$x = 90^{\circ}$$

:.

10. Find the unknown angles in the fillowing figures :

In $\triangle ABC$, AB = AC(i) $\angle B = \angle C$ \Rightarrow $x = 45^{\circ}$ So, Now, by angle sum property of a Δ , $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle A + x + 45^{\circ} = 180^{\circ}$ $\angle A + 45^{\circ} + 45^{\circ} = 180^{\circ}$ $\angle A = 180^\circ - 90^\circ$ $\angle A = 90^{\circ}$ (ii) In ΔPQR , by angle sum property of a Δ , $\angle P + \angle Q + \angle R = 180^{\circ}$ $\angle P + 90^{\circ} + 45^{\circ} = 180^{\circ}$ $\angle P + 135^{\circ} = 180^{\circ}$ $\angle P = 180^{\circ} - 135^{\circ}$ $\angle P = 45^{\circ}$ (iii) In ΔDEF , DE = DF $\angle E = \angle F = 62^{\circ}$ \Rightarrow In ΔDEF by angle sum property of a Δ , *.*.. $\angle D + \angle E + \angle F = 180^{\circ}$ $\angle D + 62^{\circ} + 62^{\circ} = 180^{\circ}$ $\angle D + 124^{\circ} = 180^{\circ}$ $\angle D = 180^\circ - 124^\circ$ $\angle D = 56^{\circ}$ $y = \angle GDF = 180^\circ - 56^\circ$ Now, (linear pair) $= 124^{\circ}$ (iv) In ΔPQR , $y + 104^{\circ} = 180^{\circ}$ $y = 180^{\circ} - 104^{\circ}$ $y = 76^{\circ}$ Now, in ΔPQR , by angle sum property of a Δ , $\angle P + \angle Q + \angle R = 180^{\circ}$ $[:: PR = QR, \angle P = \angle Q]$ $x + x + y = 180^{\circ}$ $2x + 76^\circ = 180^\circ$ or $2x = 180^{\circ} - 76^{\circ}$ $2x = 104^{\circ}$

		$x = \frac{104^{\circ}}{2}$	
		$x = 52^{\circ}$	
	(v) In $\triangle ABC$, AB		
	⇒	$\angle B = \angle C$	
		$\angle A + \angle B + \angle C = 180^{\circ}$	(by angle sum property of a Δ)
		$30^{\circ} + \angle C + \angle C = 180^{\circ}$	(-)
	or	$30^\circ + 2 \angle C = 180^\circ$	
	or	$2\angle C = 180^{\circ} - 30^{\circ}$	
	or	$\angle C = \frac{150^{\circ}}{2}$	
		$\angle C = 75^{\circ}$	
		$\angle B = \angle C = 75^{\circ}$	
	Now,	$x = 180^{\circ} - \angle B$	(linear pair)
		$= 180^{\circ} - 75^{\circ}$	
		$= 105^{\circ}$	
	and	$y = 180^{\circ} - \angle C$	(linear pair)
		$= 180^{\circ} - 75^{\circ}$	
		$= 105^{\circ}$	
11.	We have, in an isc	osceles ΔABC AB = AC	
	\Rightarrow	$AB = AC$ $\angle B = \angle C$	
	and given	$\angle B = 2\angle A$	
	then by angle sum		
	i c	$\angle A + \angle B + \angle C = 180^{\circ}$	
	4	$\angle A + 2 \angle A + 2 \angle A = 180^{\circ}$	
		$5 \angle A = 180^{\circ}$	
		$\angle A = \frac{180^{\circ}}{5}$	
	Hence,	$\angle A = 36^{\circ}$	
		$\angle B = \angle C = 2 \angle A = 2$	$\times 36^{\circ} = 72^{\circ}$
12.	In the given figure		
		$x = 180^{\circ} - 110^{\circ}$ $x = 70^{\circ}$	(linear pair)
	Now, in $\triangle ABC$, by	angle sum property of a Δ ,	
	$\angle A + \angle B + \angle C = 180^{\circ}$		
		$40^\circ + x + y = 180^\circ$	
		$40^{\circ} + 70^{\circ} + y = 180^{\circ}$	
		U U	

$$= 180^{\circ} - 110^{\circ}$$

$$y = 70^{\circ}$$
here, $x = y = 70^{\circ}$

$$\Rightarrow \qquad \angle B = \angle C$$

$$\Rightarrow \qquad AB = AC$$
Hence, $\angle ABC$ is an isosceles triangle.
13. We have, in an isosceles triangle ABC ,

$$\angle A = 4\angle B$$
We have, that in an isosceles triangle

$$AB = AC$$

$$\Rightarrow \qquad \angle AB = \angle C$$
Then by angle sum property of a \triangle , $\angle A + \angle B + \angle C = 180^{\circ}$

$$4\angle B + \angle B + \angle B = 180^{\circ}$$

$$d\angle B = \frac{180^{\circ}}{6}$$

$$\angle B = 30^{\circ}$$
Hence, $\angle A = 4\angle B = 4 \times 30^{\circ} = 120^{\circ}$
and $\angle B = 2C = 30^{\circ}$
14. In a right angled isosceles triangle ABC

$$\angle B = 90^{\circ}$$

$$AB = BC$$

$$\Rightarrow \qquad \angle A = \angle C = 30^{\circ}$$

14. In a right angled isosceles triangle ABC

$$\angle B = 90^{\circ}$$

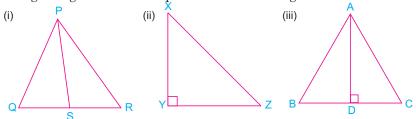
$$AB = BC$$

$$\Rightarrow \qquad \angle A = 4\angle C = 180^{\circ}$$

$$x + 90^{\circ} + x = 180^{\circ}$$

$$2x + 90^{\circ} = 180^{\circ}$$

$$2x = 90^{\circ}$$


$$x = 45^{\circ}$$
Hence, $\angle A = \angle C = x = 45^{\circ}$
Hence, $\angle A = \angle C = x = 45^{\circ}$

Fill in the blanks : 1.

- (i) Perpendicular line segment, opposite
- (ii) line segment, mid point
- (iii) AC and CB
- (iv) interior

 \sum_{c}

2. Draw rough diagrams which represent the following :

- 3. (i) A triangle can have only 3 medians (from three vertices)(ii) A triangle can have only 3 altitudes. (from three vertices)
- 4. If in a given $\triangle ABC$, medians BE = CF then it is an isosceles triangle Hence, option (ii) is correct.

Exercise 10.4

- 1. (i) right triangle (Pythagorean triplet)
 - (ii) not possible (Not Pythagorean Triplet)
 - (iii) Scalene triangle (Pythagorean triplet)
 - (iv) Scalene triangle (Pythagorean triplet)
- 2. Find the unknown length in the fillowing figures :
 - (i) In right angled $\triangle ABC$
 - by Pythagoras Property

$$(AC)^{2} = (AB)^{2} + (BC)^{2}$$
$$x^{2} = (4)^{2} + (3)^{2}$$
$$x^{2} = 16 + 9$$
$$x^{2} = 5^{2}$$

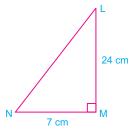
or or ∴

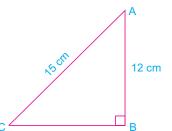
or or or ∴ $x = 5 \,\mathrm{cm}$

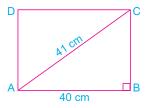
(ii) In right angled ΔPQR

by Pythagoras Property

$$(PR)^{2} = (PQ)^{2} + (RQ)^{2}$$
$$x^{2} = (6)^{2} + (8)^{2}$$
$$x^{2} = 36 + 64$$
$$x^{2} = 100$$
$$x^{2} = 10^{2}$$
$$x = 10 \text{ cm}$$


(iii) In right angled ΔLMN


by Pythagoras Property


$$(LN)^2 = (LM)^2 + (MN)^2$$

 $(13)^2 = (5)^2 + x^2$
 $169 = 25 + x^2$

or

 $169 - 25 = x^2$ or $144 = x^2$ or $12^2 = x^2$ or $x = 12 \,\mathrm{cm}$ *.*.. (iv) In right angled ΔPQR by Pythagoras Property $(PR)^2 = (PQ)^2 + (RQ)^2$ $x^2 = (24)^2 + (7)^2$ $x^2 = 576 + 49$ or $x^2 = 625$ or $x^2 = 25^2$ or $x = 25 \,\mathrm{cm}$ *.*.. 3. In right angled ΔLMN by Pythagoras Property $(LN)^2 = (LM)^2 + (MN)^2$ $=(24)^{2}+(7)^{2}$ = 576 + 49 $(LN)^2 = 625$ $(LN)^2 = 25^2$ Hypotenuse $LN = 25 \,\mathrm{cm}$... In right triangle ABC, by Pythagoras Property **4**. $(AC)^2 = (AB)^2 + (BC)^2$ $(15)^2 = (12)^2 + (BC)^2$ $225 = 144 + (BC)^2$ $225 - 144 = BC^2$ or $81 = BC^2$ or $BC^{2} = 9^{2}$ or (third side) $BC = 9 \,\mathrm{cm}$ *.*.. In right angled $\triangle ABC$, by Pythagoras Property 5. $(AC)^2 = (BC)^2 + (AB)^2$ $(41)^2 = (BC)^2 + (40)^2$ $1681 = (BC)^2 + 1600$ $1681 - 1600 = (BC)^2$ $81 = (BC)^2$ $9^2 = BC^2$ $BC = 9 \,\mathrm{cm}$ (breadth of rectangle)

and length AB = 40 cm (Given) Now, Perimeter of rectangle = $2 \times (l + b)$ = $2 \times (40 + 9)$

 $= 2 \times 49$ $= 98 \,\mathrm{cm}$

Hence, the perimeter of rectangle is 98 cm.

6. Let *O* be the starting position of Niru

... OA = 12 m AB = 5 m, OB = ?B In the right angled $\triangle OAB$ 5 m $(OB)^2 = (OA)^2 + (AB)^2$ by Pythagoras Property $=(12)^2+(5)^2$ Е 12 m Ŵ = 144 + 25= 169 $(OB)^2 = (13)^2$ S or = OB = 13 m

Hence, Niru is at a distance of 13 m from her starting point.

- 7. Let *ABC* be an isosceles triangle, right angled at $B, AB = BC, AC^2 = 50 \text{ cm}^2$ by Pythagoras property
 - $(AC)^{2} = (AB)^{2} + (BC)^{2}$ $50 = x^{2} + x^{2}$ or $50 = 2x^{2}$ or $\frac{50}{2} = x^{2}$ or $x^{2} = 25$ or $x^{2} = 5^{2}$ $\therefore \qquad x = 5 \text{ cm}$

Hence, each of equal sides of the isosceles triangle is 5 cm.

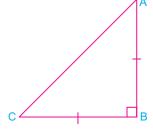
8. Let the three sides be

$$a = 6 \text{ cm}, b = 4.5 \text{ and } c = 7.5 \text{ cm}$$

 $a^{2} + b^{2} = (6)^{2} + (4.5)^{2}$
 $= 36 + 20.25 = 56.25$
 $c^{2} = (7.5)^{2}$
 $= 56.25$

Since, $a^2 + b^2 = c^2$

So, this triangle is a right triangle with hypotenuse (longest side) 7.5 cm.


9. We have,

and

$$PR = 17 \text{ m}, PQ = 15 \text{ m} \text{ and } QP = ?$$

In right angled triangle PQR, by Pythagoras Property,

$$(PR)^2 = (PQ)^2 + (QR)^2$$

$$(17)^{2} = (15)^{2} + (QR)^{2}$$

$$289 = 225 + (QR)^{2}$$
or
$$289 - 225 = (QR)^{2}$$
or
$$64 = (QR)^{2}$$
or
$$QR^{2} = 8^{2}$$

$$\therefore \qquad QR = 8 \text{ m}$$
Hence, the lower end of the ladder is 8 m for from the base of the wall.

10. In right angled triangle ABC, by Pythagoras property

$$(AC)^{2} = (AB)^{2} + (BC)^{2}$$

$$(26)^{2} = (AB)^{2} + (10)^{2}$$

$$676 = (AB)^{2} + 100$$
or $676 - 100 = (AB)^{2}$
or $576 = (AB)^{2}$
or $(AB)^{2} = 24^{2}$
∴ $AB = 24$ cm

11. Let total height of the tree before falling be AB. Let C be the point from where the trunk is bent so that the point B touches the ground at point D.

then,
$$CD = CB$$

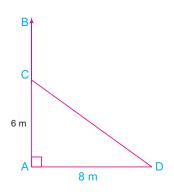
height of tree =
$$AC + CD$$

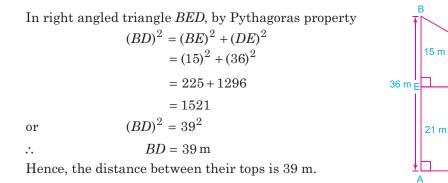
Now, in right angled ΔDAC ,
 $(CD)^2 = (AC)^2 + (AD)^2$ (Pythagoras property)
 $= (6)^2 + (8)^2$
 $= 36 + 64$
 $(CD)^2 = 100$
 $CD^2 = 10^2$

$$CD = 10 \text{ m}$$

Hence, the total (actual) height of the tree

= AC + CD= (6 + 10) m = 16 m


12. Let AB and CD be the given poles and AC be the distance between them. Draw $DE \perp AB$ and join BD.


$$AB = 36 \text{ m}, CD = 21 \text{ m}, AC = 36 \text{ m}, DE = 36 \text{ m},$$

$$BE = AB - AE$$

$$= AB - CD$$

$$= 36 - 21 = 15$$

In $\triangle BED$, $\angle E = 90^{\circ}$
 $DE = 36 \text{ m}, BE = 15 \text{ m}$

Chapter 11 : Congruent Triangles

Exercise 11.1

1. Which of the following line segments are congruent? (Measure and state) :

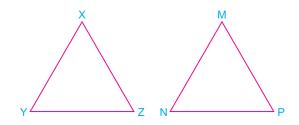
Do yourself by measuring with ruler.

2. Which of the following angles are congruent? (Measure and state)

Do yourself by measuring with protractor.

- **3.** Fill in the Blanks :
 - (i) they have the same measure
 - (ii) length, breadth
 - (iii) size, shape
 - (iv) 5 cm
- 4. According to congruence rule,

$$CAB \leftrightarrow EDF$$

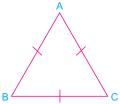

- (i) AC = DE (iii) $\angle B = \angle F$
- (v) $\angle A = \angle D$ and (vi) AB = DF

only these four statements are correct.

5. We have, $\angle AOC = \angle DOB$ then $\angle AOD = \angle BOC$ $\Rightarrow \qquad \angle AOD \cong \angle BOC$

Exercise 11.2

- 1.. (i) No
 - (ii) No
 - (iii) Yes, $\Delta XYZ \cong \Delta MNP$ because $XZ \leftrightarrow MP$ (4.5 cm) $YZ \leftrightarrow NP$ (3 cm) $\angle X \leftrightarrow \angle M$ (60°)


36 m

D

С

21 m

2. From the given figure : In $\triangle CAB$ and $\triangle DAB$, AC = AD(4.5 cm)CB = DB(3 cm)AB = AB(common) by SSS congruence condition $\Delta CAB \cong \Delta DAB$ 3. From the given figure, In ΔPQO and ΔPRO (Given) PQ = PRQO = OR(*O* is mid point) PO = PO(common) by SSS congruence condition $\Delta PQO \cong \Delta PRO$ 4. In $\triangle ABC$ and $\triangle ACB$ (where $\triangle ABC$ is an equilateral triangle) AB = ACBC = BC $\angle B = \angle C$ by SAS congruence condition $\Delta ABC \cong \Delta ACB$ 5. (i) From the given figure, In $\triangle ABC$ and $\triangle DBC$ AC = DC(Given) AB = DB(given) BC = BC(common) by SSS congruence condition $\angle ABC \equiv \Delta DBC$ (ii) Yes, BC bisects $\angle ABD$ and $\angle ACD$ by C.P.C.T. (corresponding parts of congruent triangles) Yes, $\angle A = \angle D$ (by C.P.C.T.) (iii) **6**. From the figure, In $\triangle ABC$ and $\triangle CDA$ $\angle BAC = \angle DCA$ (Given) $\angle BCA = \angle DAC$ (Given) AC = AC(common) by ASA congruence condition $\Delta ABC \cong \Delta CDA$ 7. In $\triangle CBD$ and $\triangle BCE$ BD = CE(Given) $\angle D = \angle E$ (90°) BC = BC(common) $\Delta CBD \cong \Delta BCE$ bv C.P.C.T., CD = BE

- 8. In $\triangle PQO$ and $\triangle SRO$
 - $\angle POQ = \angle ROS$ (Given) PO = SO (Given) $\angle PQO = \angle SRO$ (Given)

by ASA congruence condition

 $\Delta PQO \cong \Delta SRO$

9. In $\triangle PQS$ and $\triangle RQS$

$$PQ = QR \qquad (Given)$$
$$\angle QSP = \angle QSR \qquad (90^{\circ})$$

$$QS = QS$$
 (Common)

(a)

by SAS congruence condition

$$\Delta PQS \cong \Delta RQS$$

10. We have, *ABCD* is a parallelogram and in a || gm opposite sides and opposite angles are equal.

Now, In $\triangle ABD$ and $\triangle DCA$

AB = DC	(opposite sides of gm)
BD = AC	(opposite sides of gm)
AD = AD	(Common)

by SSS congruence condition

 $\Delta ABD \cong \Delta DCA$

11. From the given figure In ΔPQM and ΔPRM

PQ = PR	(Given)
PM = PM	(common)
$\angle QPM = \angle RPM$	(Given)

- by SAS congruence condition, $\Delta PQM \cong \Delta PRM$
- by C.P.C.T., QM = MR
- \Rightarrow *M* is the mid point of *QR*.
- **12.** In $\triangle ADC$ and $\triangle CBA$
 - AD = BC (Given) CD = AB (Given) CA = CA (Common) by SSS congruence condition

 $\Delta ADC \cong \Delta CBA$

Chapter 12 : Practical Geometry

Exercise 12.1

Do yourself.

	Exercise 12.2
Do yourself.	
	Exercise 12.3
Do yourself.	
	Exercise 12.4
Do yourself.	
	Exercise 12.5
Do Yourself.	

Chapter 13 : Perimeter and Area

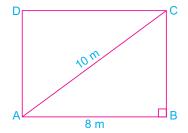
	Exercise 13.1
1.	Length of the rectangle = $60 \mathrm{cm}$
	Breadth of the rectangle = 40 cm
	\therefore Area of the rectangle = $l \times b$
	$= 60 \times 40 \mathrm{cm}^2$
	$= 2400 \mathrm{cm}^2$
2.	Perimeter of square = 80 m
	$4 \times \text{side} = 80 \text{ m}$
	side = $\frac{80}{4}$
	1
	side = 20 m
	Now, area of the square = side \times side
	$= 20 \times 20 \text{ m}^2$
	$=400\mathrm{m}^2$
3.	Area of the rectangle = $560 \mathrm{cm}^2$
	Breath of the rectangle = 20cm
	\therefore Area of rectangle = $l \times b$
	$560 = l \times 20$
	$\frac{560}{20} = l$
	$\frac{20}{l} = 28 \mathrm{cm}$
	$\therefore \text{ Perimeter of rectangle} = 2 \times (l+b)$
	$= 2 \times (28 + 20)$
	$= 2 \times (20 + 20)$ = 2 × 48
	$= 96 \mathrm{cm}$
4.	Length of the rectangle = 70 m
	Breath of the rectangle = $40\frac{1}{2}$ m
	2
	\therefore Perimeter of rectangle = $2 \times (l + b)$

 $=2\times\left(70+40\frac{1}{2}\right)$ $=2\times\left(70+\frac{81}{2}\right)$ $=2\times\left(\frac{140+81}{2}\right)$ = 221 m. Area of rectangle = $l \times b$ and $= 70 \times 40 \frac{1}{2} \text{ m}^2$ $= 70 \times \frac{81}{2} \text{ m}^2$ $= 35 \times 81 \text{m}^2 = 2835 \text{m}^2$ We have, side of the square = 8 cm5. Length of the rectangle = 12 cmGiven : Perimeter of the rectangle = Perimeter of the square $2(l+b) = 4 \times \text{side}$ $2(12+b) = 4 \times 8$ 24 + 2b = 322b = 32 - 242b = 8 $b = \frac{8}{2} = 4$ breadth of the rectangle b = 4 cm*.*.. 6. Side of the square = 75 mm $= 7.5 \,\mathrm{cm}$ Perimeter of square = $4 \times side$ $= 4 \times 7.5 \,\mathrm{cm} = 30.0 \,\mathrm{cm}$ Area of square = side \times side $= 7.5 \times 7.5$ cm² $= 56.25 \text{ cm}^2$ 7. Length of the room = 1500 cm = 15 mBreadth of the room = 10 mArea of the room = $l \times b$ $= 15 \times 10 \text{ m}^2$ $= 150 \text{m}^2$ So, the Area of carpet is $150m^2$ that covers the floor of the room. Cost of dry cleaning the carpet = ₹ 15×150 =₹2250

8. Diagonal length of a square = 16 cm

a √2 = 16
a
$$\sqrt{2}$$
 = 16
a $= \frac{16}{\sqrt{2}}$
∴ side of square $= \text{side} \times \text{side}$
 $= \frac{16}{\sqrt{2}} \times \frac{16}{\sqrt{2}}$
 $= \frac{256}{\sqrt{2}} = 128 \text{ cm}^2$
10. Given that total wire remains same both for square as well as rectangle
Perimeter of rectangle = Perimeter of square
 $2 \times (l + b) = 4 \times \text{side}$
 $2 \times (12 + 10) = 4 \times \text{side}$
 $2 \times (22 + 4) = 4 \times \text{side}$
 $2 \times (22 + 4) = 4 \times \text{side}$
 $2 \times 22 = 4 \times a$
 $\frac{44}{4} = a$
∴ side of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 11 \text{ cm}$
11. Length of the square $a = 10 \text{ cm}$
∴ Area of the square $a = 10 \text{ cm}$
∴ Area of the square $a = 10 \text{ cm}$
∴ Area of the square $a = 10 \text{ cm}$
∴ Area of the tile $= 1 \times b$
 $= 22 \times 10 \text{ cm}^2$
No. of tiles $= \frac{\text{Area of the wall}}{\text{Area of a tile}}$
 $= \frac{484 \times 310}{22 \times 10}$
 $= 22 \times 31$
 $= 682 \text{ tiles}$
Total cost of the tiles at ₹ 1.50 per tile
 $= ₹ 682 \times 1.50$
 $= ₹ 1023$
12. Area of the room $= \frac{\text{Total cost}}{\text{Cost at per metre}}$
 $= \frac{₹1125}{₹225}$
 $= 45 \text{ m}^2$
Width of the room $= 5 \text{ m}$

 \therefore Area of the room = $l \times b$


$$45 = l \times 5$$
$$= \frac{45}{5} = 9$$

: (length of the room) l = 9 m

13. Length of diagonal = 10 m Length of rectangle = 8 m

Now, in right angled $\triangle ABC$ by Pythagoras property

 $(AC)^{2} = (AB)^{2} + (BC)^{2}$ $(10)^{2} = (8)^{2} + (BC)^{2}$ $100 = 64 + (BC)^{2}$ $100 - 64 = (BC)^{2}$ $36 = (BC)^{2}$ $BC^{2} = 6^{2}$

$$\therefore$$
 Breath of the rectangle, $BC = 6$ m

$$\therefore \quad \text{Area of the rectangular plot} = l \times b$$

$$= 8 \,\mathrm{m} \times 6 \,\mathrm{m}$$

$$= 48 \,\mathrm{m}^2$$

14. Length of the room = 7 m Breadth of the room = 5.5 m Height of the room = 3.5 m Area of 4 walls = $2(l + b) \times h$

$$= 2 \times (7 + 5.5) \times 3.5$$

 $= 2 \times 12.5 \times 3.5$

$$2 \times 12.0 \times 0.1$$

$$= 87.5 \text{ m}^{-2}$$

Length of the door = 2 m

Breadth of the door = 1.5 m

Area of the door = $l \times b$

$$= 2 \times 1.5 = 3.0 \text{m}^2$$

Length of the window = 1.5 m

Breadth of the window = 1 m

Area of 2 windows = $2 \times (l \times b)$

$$= 2 \times (1.5 \times 1)$$

$$= 3.0 \text{ m}^2$$

Total Area of door and windows = (3 + 3) m² = 6 m² Required area for white washing the walls = (87.5 - 6) m² = 81.5 m Cost of white washing = ₹ 50 × 81.5 = ₹ 4075

10:

15. We have, side of the square park = 90 m

length of the rectangular park = 270 m

Given area of the square park = area of the rectangular park

side × side =
$$l \times b$$

 $90 \times 90 = 270 \times b$
 $b = \frac{90 \times 90}{270}$
 $= \frac{90}{3} = 30$
 $b = 30 \text{ m}$

:. breadth of the rectangular park is 30 m.

Exercise 13.2

- 1. Find the area of each of the following parallelograms :
 - (i) Area of || gm = $b \times h$

$$= DC \times DE$$

$$= 6 \times 4$$

$$= 24 \text{ cm}^{2}$$

(ii) Area of || gm = $b \times h$

$$= PQ \times SM$$

$$= 5 \times 3 \text{ cm}^{2}$$

$$= 15 \text{ cm}^{2}$$

(iii) Area of || gm = $b \times h$

$$= NM \times LP$$

$$= 2 \times 4.4 \text{ cm}^{2}$$

$$= 8.8 \text{ cm}^{2}$$

2. Find the area of each of the following triangles :

(i) Area of triangle =
$$\frac{1}{2} \times b \times h$$

= $\frac{1}{2} \times 3 \times 4 \text{ cm}^2$
= 6 cm^2
(ii) Area of triangle = $\frac{1}{2} \times b \times h$
= $\frac{1}{2} \times 5 \times 4 \text{ cm}^2$
= 10 cm^2

(iii) Area of triangle LMN = $\frac{1}{2} \times b \times h$ $=\frac{1}{2}\times3\times2$ cm² $= 3 \, \mathrm{cm}^2$ 3. Complete the following table : (i) Base = 3.5 cmArea of || gm = 9.45 cm² height = ?Area of || $gm = B \times H$ $9.45 = 3.5 \times H$ $H = \frac{9.45}{3.5}$ $H = 2.7 \,\mathrm{cm}$ Base = ?(ii) height = 21 cmArea of || gm = 32.76 cm² Area of || gm = $B \times H$ $32.76 = B \times 21$ $B = \frac{32.76}{21}$ $B = 1.56 \, {\rm cm}$ $Base = 7.8 \, cm$ (iii) height = 5 cmArea of || gm = ? Area of || gm = $B \times H$ $= 7.8 \times 5 \text{ cm}^2$ $= 39.0 \,\mathrm{cm}^2$ Find the missing values : **4**. $Base = 22 \, cm$ (i) height = ?Area of triangle = 170.5 cm² Area of triangle = $\frac{1}{2} \times b \times h$ $170.5 = \frac{1}{2} \times 22 \times h$ $h = \frac{170.5}{11}$ or $h = 15.5 \,\mathrm{cm}$ *.*..

(ii) Base = 15 cm
height = 11.6 cm
Area of triangle =
$$\frac{1}{2} \times b \times h$$

 $= \frac{1}{2} \times 15 \times 11.6$
 $= 87 \text{ cm}^2$
(iii) Base = ?
height = 10 cm = 0.10 m
Area of triangle = $0.5m^2$
Area of triangle = $\frac{1}{2} \times b \times h$
 $0.5 = \frac{1}{2} \times b \times 0.10$
 $\frac{0.5 \times 100}{0.05 \times 10} = b$
 $\frac{50}{5} = b$
5. Base = ?
Area of || gm = 1545.5 cm²
height = 15 cm
Area of || gm = $b \times h$
 $1545.5 = b \times 15$
or $\frac{1545.5}{15} = b$
 \therefore $b = 103.03 \text{ cm}$
6. Let base of the triangle = $3x$
height of the triangle = $12 \times b \times h$
 $108 = \frac{1}{2} \times 3x \times 2x$
or $108 = 3x^2$
or $x^2 = \frac{108}{3}$
or $x^2 = 36$
or $x^2 = 6^2$
 \therefore $x = 6 \text{ cm}$
Hence, base of the rectangle = $3x = 3 \times 6 = 18 \text{ cm}$

7.

9.

Altitude = ?

Area of triangle = 42 cm^2

base = 12 cm

$$\therefore \quad \text{Area of triangle} = \frac{1}{2} \times b \times h$$

$$42 = \frac{1}{2} \times 12 \times h$$

$$42 = 6 \times h$$

$$\frac{42}{6} = h$$

$$h = 7 \text{ cm}$$

Hence, altitude of the triangle is 7cm.

8. Let ABCD be a rhombus whose trigonals interest at right angles In right angled $\triangle COB$

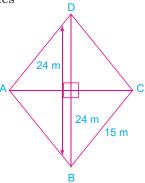
$$(BC)^{2} = (OC)^{2} + (OB)^{2}$$

$$(15)^{2} = (OC)^{2} + (12)^{2}$$

$$225 = (OC)^{2} + (12)^{2}$$

$$225 - 144 = (OC)^{2}$$

$$81 = OC^{2}$$


$$OC = 9 \text{ cm}$$
So, diagonal $AC = 2 \times OC$

$$= 2 \times 9 = 18 \text{ cm}$$
and diagonal $BD = 24 \text{ cm}$ (Given)
∴ Area of rhombus $= \frac{1}{2} \times d_{1} \times d_{2}$

$$= \frac{1}{2} \times 18 \times 24$$

$$= 9 \times 24 = 216 \text{ cm}^{2}$$
Let base of || gm = $3x \text{ cm}$
height of || gm = $3x \text{ cm}$
Area of || gm = 108 cm^{2}
∴ Area of || gm = $b \times h$

$$108 = 3x^{2}$$

or $x^{2} = \frac{108}{3}$
or $x^{2} = 36$
or $x^{2} = 6^{2}$
 $\therefore \qquad x = 6$
Hence, base of || gm = x = 6 cm
height of || gm = 3x = 3 \times 6
= 18 cm

10. From the figure,

Area of || gm corresponding height RN = Area of || gm corresponding height RM

$$SP \times RN = PQ \times RM$$

 $30 \times RN = 50 \times RM$

but Area of || gm = 1500 cm²

So, $30 \times RN = 1500$ and $50 \times RM = 1500$

$RN = \frac{1500}{30}$	$RM = \frac{1500}{50}$

 $RN = 50 \,\mathrm{cm}$ $RM = 30 \,\mathrm{cm}$

11. Area of || gm = ?

base = 12 dm

 $height = 450 \, dm$

 $\therefore \qquad \text{Area of } || \text{ gm} = b \times h$ $= 12 \times 450 \text{ dm}^2$

$$= 5400 \,\mathrm{dm}^2$$

12. Area of triangle = $\frac{1}{2} \times b \times h$

If b = 2b, h = 2hthen Area of new triangle $= \frac{1}{2} \times b \times h$ $= \frac{1}{2} \times 2b \times 2h$

$$=\frac{1}{2}bh \times 4$$

 $= 4 \times$ Area of triangle

Hence, new area of triangle will be 4 times the original area.

- **13.** Area of triangle corresponding height, $CD = \frac{1}{2} \times b \times h$
- $= \frac{1}{2} \times 20 \times 9$ $= 90 \text{ cm}^2$ ∴ Area of triangle corresponding height, $AE = \frac{1}{2} \times AE \times BC$ $90 = \frac{1}{2} \times AE \times 15$ or $\frac{90 \times 2}{15} = AE$ ∴ AE = 12 cm14. Area of rectangle $ABCD = l \times b$ $= 12 \times 7 \text{ cm}^2$ $= 84 \text{ cm}^2$ Area of $\Delta DEA = \frac{1}{2} \times b \times h$ $= \frac{1}{2} \times 7 \times 4$ $= 14 \text{ cm}^2$
- ∴ Area of shaded portion = A of Rectangle A of $\triangle DEA$ = $(84 - 14) \text{ cm}^2$ = 70 cm^2 15. Area of $\triangle BCD = \frac{1}{2} \times BD \times CM$ = $\frac{1}{2} \times 40 \times 8m^2$ = $160m^2$ Area of $\triangle BAD = \frac{1}{2} \times BD \times AL$ = $\frac{1}{2} \times 40 \times 10$ = $200m^2$ ∴ Total Area of quadrilateral ABCD= $A \text{ of } \triangle BCD + A \text{ of } \triangle BAD$ = $(160 + 200)m^2$ = $360m^2$

Exercise 13.3

Find the circumference and area of a circle of radius :

 (i) Radius = 10.5 cm

Circumference of circle, $C = 2\pi r$

$$= 2 \times \frac{22}{7} \times 10.5$$

$$= 66 \,\mathrm{cm}$$

and Area of circle (A) = πr^2

$$= \frac{22}{7} \times 10.5 \times 10.5$$
$$= 346.5 \,\mathrm{cm}^2$$

(ii)

(iii)

and

$$r = 14 \,\mathrm{cm}$$

Circumference of circle, $C = 2\pi r$

$$= 2 \times \frac{22}{7} \times 14$$
$$= 88 \,\mathrm{cm}$$

and Area of circle (A) = πr^2

 $= \frac{22}{7} \times 14 \times 14 = 616 \text{ cm}^2$ r = 3.2 cm

Circumference of circle, $C = 2\pi r$

$$= 2 \times \frac{22}{7} \times 3.2$$
$$= \frac{140.8}{7} \times 20.11 \text{ cm}$$
Area of circle, $A = \pi r^2$
$$= \frac{22}{7} \times 3.2 \times 3.2$$

$$=\frac{225.28}{7}=32.18\,\mathrm{cm}^2$$

- 2. Find the circumference and area of a circle of diameter:
 - (i) diameter = 48 cm radius = $\frac{d}{2} = \frac{48}{2} = 24$ cm \therefore $C = 2\pi r$

(II

$$= 2 \times \frac{22}{7} \times 24 = \frac{1056}{7} = 150.85 \text{ cm}$$

and
$$A = \pi r^{2}$$
$$= \frac{22}{7} \times 24 \times 24$$
$$= \frac{12672}{7}$$
$$= 1810.28 \text{ cm}^{2}$$
(ii)
diameter = 3.5 cm
radius = $\frac{d}{2} = \frac{3.5}{2} \text{ cm}$
 \therefore
$$C = 2\pi r = 2 \times \frac{22}{7} \times \frac{3.5}{2} = 11.0 \text{ cm}$$
and
$$A = \pi r^{2} = \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} = \frac{5.5 \times 3.5}{2} = 9.625 \text{ cm}^{2}$$
(iii)
diameter = 7 cm
radius = $\frac{d}{2} = \frac{7}{2} \text{ cm}$
 \therefore
$$C = 2\pi r = 2 \times \frac{22}{7} \times \frac{7}{2} = 22 \text{ cm}$$
and
$$A = \pi r^{2} = \frac{22}{7} \times \frac{7}{2} = \frac{77}{2}$$
$$= 38.5 \text{ cm}^{2}$$

Radius of an engine wheel = 2.8 cmDistance covered by engine in one round (*C*)

$$= 2\pi r$$
$$= 2 \times \frac{22}{7} \times 2.8$$

$$= 17.6 \,\mathrm{cm}$$

Distance covered by engine in 100 revolutions

$$= 100 \times 17.6 \,\mathrm{cm}$$

$$= 1760.0 \,\mathrm{cm}$$

4. Diameter of a ring = 21 m

:..

Radius =
$$\frac{d}{2} = \frac{21}{2}$$
 m
Area of ring = πr^2

$$= \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} = \frac{33 \times 21}{2}$$
$$= \frac{693}{2} = 346.5 \,\mathrm{cm}^2$$

5. Circumference of a circle = 18π cm

$$2\pi r = 18\pi$$
$$2r = 18$$
$$r = \frac{18}{2} = 9$$

 \therefore radius of circle, r = 9 cm

6. Diameter of a wheel = 70 cm

Radius = $\frac{d}{2} = \frac{70}{2}$ cm = 35 cm

Distance covered by the wheel in one revolution = $2\pi r$

$$= 2 \times \frac{22}{7} \times 35$$
$$= 220 \,\mathrm{cm}$$

distance covered by the wheel in 15 revolutions = 15×220

 $= 3300 \,\mathrm{cm}$

7. Let radius of Ist circle, $r_1 = 3x$

Let radius of IInd circle, $r_2 = 4x$

$$\therefore \text{ ratio of their circumferences} = \left(\frac{C_1}{C_2}\right) = \frac{2\pi r_1}{2\pi r_2}$$
$$= \frac{r_1}{r_2}$$
$$= \frac{3x}{4x} = \frac{3}{4}$$
$$= 3:4$$

8. Given that circumference of a circle = Perimeter of a square

$$2\pi r = 4 \times \text{side}$$
$$2\pi r = 4 \times 22$$
$$\times \frac{22}{7} \times r = 4 \times 22$$
$$r = \frac{4 \times 22 \times 7}{2 \times 22}$$

 \therefore radius of the circle r = 14 cm

 $\mathbf{2}$

9. Diameter of the inner circle = 3 m

Radius
$$(r) = \frac{3}{2}$$
 m

Diameter of the outer circle = 11 m

Radius
$$(R) = \frac{11}{2}$$
 m

Area enclosed by two circles = $(\pi R^2 - \pi r^2)$

$$= \pi (R^2 - r^2)$$

$$= \frac{22}{7} \left[\left(\frac{11}{2} \right)^2 - \left(\frac{3}{2} \right)^2 \right]$$

$$= \frac{22}{7} \times \left(\frac{121}{4} - \frac{9}{4} \right)$$

$$= \frac{22}{7} \times \left(\frac{121 - 9}{4} \right)$$

$$= \frac{22}{7} \times \frac{112}{4}$$

$$= 22 \times 4 = 88 \text{ cm}^2$$

10. r = 14 cm

and 45 minutes = $\frac{45}{60} = \frac{3}{4}$ hour

Distance covered in 1 hour = Circumference = $2\pi r$

$$= 2 \times \frac{22}{7} \times 14$$

Distance covered in $\frac{3}{4}$ hour $= 2 \times \frac{22}{7} \times 14 \times \frac{3}{4}$
 $= 22 \times 3 = 66$ cm

Hence, the tip of the minute hand moves 66 cm in 45 minutes

- **11.** Area of a circle $(A_1) = 77 \text{ cm}^2$
 - Radius of the other circle = ?

Area of other circle $(A_2) = 2 \times A_1$ (Given)

$$= 2 \times 77$$
$$= 154 \text{ cm}^2$$

 \therefore Area of circle $(A_2) = \pi r^2$

$$154 = \frac{22}{7} \times r^2$$

11:

or $\frac{154 \times 7}{22} = r^2$ or $7^2 = r^2$ \therefore r = 7 cm

Hence, radius of the other circle is 7 cm.

12. Diameter of a circular top = 1.4 m

radius =
$$\frac{d}{2} = \frac{1.4}{2} = 0.7 \,\mathrm{m}$$

Area of the top = πr^2

$$= \frac{22}{7} \times \frac{0.7}{2} \times \frac{0.7}{2}$$
$$= \frac{1.1 \times 0.7}{2} = \frac{0.77}{2}$$
$$= 0.1925 \text{ cm}^2$$

∴ the cost of polishing the circle top = ₹ 25×0.1925 = ₹ 4.8125

13. Radius of circle = 1.4 cm

Area of two circles having same radius

$$= \pi r^2 \times 2$$
$$= \frac{22}{7} \times 1.4 \times 1.4 \times 2$$
$$= 12.32 \text{ cm}^2$$

Base of the triangle = 3 cm
Height of the triangle = 2 cm
Area of the triangle =
$$\frac{1}{2} \times b \times h$$

= $\frac{1}{2} \times 3 \times 2$ cm

Length of the rectangle = 4 cm

Breadth of the rectangle = 2 cm

Area of the rectangle =
$$l \times b = 4 \times 2 = 8 \text{ cm}^2$$

Now, Area of biggest circle = πR^2

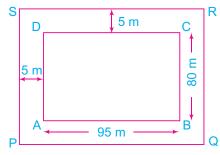
$$= \frac{22}{7} \times 7 \times 7$$
$$= 154 \,\mathrm{cm}^2$$

Now, required remaining area = $(154 - (12.32 + 3 + 8) \text{ cm}^2)$

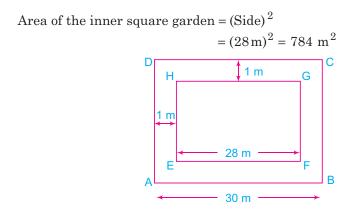
$$=(154 - 23.32) \text{ cm}^2$$

= 130.68 cm²

11


14. Radius of the smaller circle (garden) = 56 mRadius of the larger circle (garden with road) = (56 + 7) m

= 63 m Area of the road = A of larger circle – A of smaller circle = $\pi r_1^2 - \pi r_2^2$


$$= \pi (r_1^2 - r_2^2)$$

= $\frac{22}{7} \times [(63)^2 - (56)^2]$
= $\frac{22}{7} \times [3969 - 3136]$
= $\frac{22}{7} \times 833 = 2618 \text{ m}^2$

Cost of gravelling 1 sq m of road = ₹ 50 Cost of gravelling 2618 sq m of read = ₹ 50×2618 = ₹ 130900

- Exercise 13.4
- Length of garden (AB) = 95 m1. Breadth of garden (BC) = 80 mArea of the garden (*ABCD*) = $l \times b$ $= 95 \times 80 \text{ m}^2$ $= 7600 \,\mathrm{m}^2$ S Length of garden with path (PQ) = (95 + 5 + 5)D $= 105 \,\mathrm{m}$ Breadth of garden with path (RQ) = (80 + 5 + 5)5 m $= 90 \, \text{m}$ Area of rectangle $PQRS = l \times b$ $= 105 \times 90 \text{ m}^2$ P $= 9450 \text{ m}^2$ Area of the path = A of Rec PQRS – A of Rec ABCD*.*.. $= (9450 - 7600) \text{ m}^2$ $= 1850 \text{ m}^2$ $= 1850 \times 100 \times 100$ cm²
 - $= 18500000 \,\mathrm{cm}^2$

2. Length of land (PQ) = 300 mBreadth of land (RQ) = 200 mArea of land = $l \times b$ $= 300 \times 200 \text{ m}^2 = 60000 \text{ m}^2$ Length of land with road (AB) = (300 + 10 + 10) = 320 mBreadth of land with road (BC) = (200 + 10 + 10) = 220 m10 m S Area of land with road = $l \times b$ $= 320 \times 220 \text{ m}^2$ 200 m $= 70400 \text{ m}^2$ 300 m Area of the road = A of rec ABCD = A of rec PQRS.... $= (70400 - 60000) \text{ m}^2$ $= 10400 \text{ m}^2$ Cost of levelling the road = ₹ 1.50 × 10400 =₹15600 Length of rectangular park (LM) = 72 m3. Breadth of rectangular park (MN) = 48 m2 m 0 Ν Н Е Area of rectangular of park (*LMNO*) = $l \times b = 72 \times 48 \text{ m}^2$ S R $= 3456 \,\mathrm{m}^2$ C D 48 m 2 m A Ρ Area of cross roads = Area of rectangle ABCD + A of Q rectangle EFGH –A of square PQRS F G Μ $= (72 \times 2 + 48 \times 2 - 2 \times 2) \text{ m}^2$ 72 m $= (144 + 96 - 4) \text{ m}^2 = 236 \text{ m}^2$ Area of the remaining portion of the park = (A of rec *LMNO* – A of cross road) $= (3456 - 236) \text{ m}^2$ $= 3220 \text{ m}^2$ Side of the outer garden = 30 m4. Width of the path = 1 mSide of inner square garden = (30 - 1 - 1) m $= 28 \, {\rm m}$ Area of the square garden = $(side)^2$ $=(30 \text{ m})^2$ $= 900 \,\mathrm{m}^2$

(i) \therefore Area of the path

= A of the outer square garden

– A of the inner square garden

 $= (900 - 784) \text{ m}^2 = 116 \text{ m}^2$

(ii) Area of garden over which grass to be planted = 784 m² Cost of planting 1 sq m grass = ₹ 2.50 Cost of planting 784 sq. m grass = ₹ 784×₹ 2.50

=₹1960

5. Length of the inner rectangle = 50 m Breadth of the inner rectangle = 35 m

Area of the inner rectangle = $l \times b$

$$= 50 \times 35 \text{ m}^{2}$$

$$= 1750 \text{ m}^{2}$$

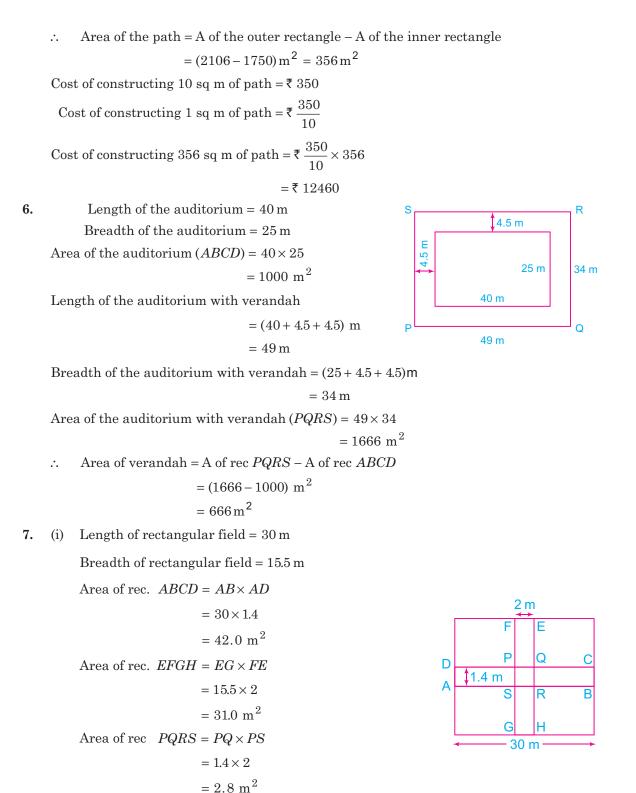
$$2 \text{ m}$$

$$35 \text{ m}$$

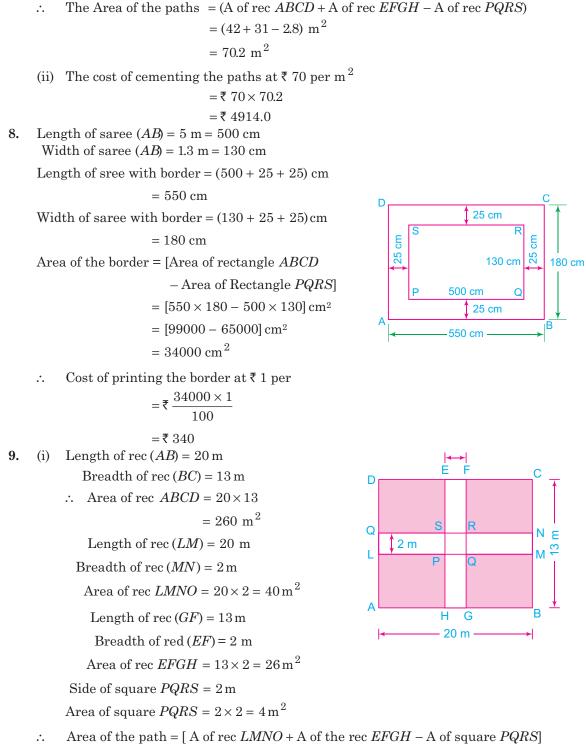
$$50 \text{ m}$$

$$39 \text{ m}$$

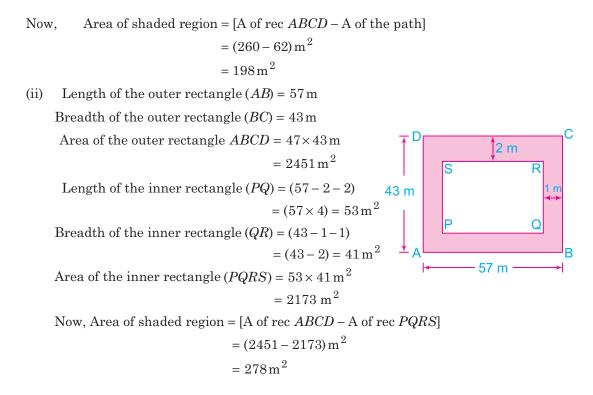
$$54 \text{ m}$$


Length of the outer rectangle = (50 + 2 + 2)

 $= 54 \,\mathrm{m}$


Breadth of the outer rectangle = (35 + 2 + 2) = 39 m


Area of the outer rectangle = $l \times b$


 $= 54 \times 39 = 2106 \,\mathrm{m}^2$

Chaapter 14 : Data Handling

Exercise 14.1

 Find the mean of first seven even numbers : First seven even numbers 2, 4, 6, 8, 10, 12, 14 Mean = sum of all observations Total no. of observations = 2+4+6+8+10+12+14/7 = 56/7 = 8
 Find the range and mean of the following values : We have, 44, 61, 68, 57, 52, 30, 67, 35 Highest score = 68 Lowest score = 30 ∴ Range = highest score - lowest score

$$\therefore \qquad \text{Mean} = \frac{\text{Ingliest score}}{\text{Total no. of observations}}$$
$$= \frac{44 + 61 + 68 + 57 + 52 + 30 + 67 + 35}{8}$$
$$= \frac{414}{8} = 51.75$$

- **3.** Following are the ages (in years) of 10 teachers in a school : Ages of 10 teachers are 23, 35, 32, 22, 25, 40, 42, 36, 45, 33
 - (i) The age of the oldest teacher is 45 years
 - (ii) The age of the youngest teacher is 22 years
 - (iii) Range = age of the oldest teacher age of the youngest

$$= (45 - 22) = 23$$
(iv) \therefore Mean age = $\frac{\text{Sum of all observations}}{\text{Total no. of observations}}$

$$= \frac{23 + 35 + 32 + 22 + 25 + 40 + 42 + 36 + 45 + 33}{10}$$

$$= \frac{333}{10} = 33.3 \text{ years}$$

- (v) The no. of teachers having the age less than mean age = 5(22, 23, 25, 32, 33)
- 4. Marks obtained by 7 students

(i) Mean marks =
$$\frac{\text{Sum of all observations}}{\text{Total no. of observation}}$$
$$= \frac{59 + 68 + 72 + 49 + 84 + 92 + 24}{7}$$
$$= \frac{448}{7} = 64$$

(ii) Mean marks if a student whose marks are 48 is also included, 448 ± 48

Mean marks =
$$\frac{448 + 48}{8}$$

= $\frac{496}{8}$ = 62

(ii) Mean marks if a student whose marks are 72 is excluded,

Mean marks =
$$\frac{448 - 72}{6}$$

= $\frac{376}{6}$ = 62.66

5. The attendance in a school during 6 days of the week,

1555, 1670, 1750, 1513, 1640, 1622

Mean attendance =
$$\frac{\text{Sum of all observations}}{\text{Total no. of observations}}$$
$$= \frac{1555 + 1670 + 1750 + 1513 + 1640 + 1622}{6}$$
$$= \frac{9750}{6} = 1625$$

6. We have, 9.3, 7.7, 8.6, 2.5, 6.9, 10 and 4.7

$$Mean = \frac{Sum \text{ of all observations}}{Total \text{ no. of observations}}$$

$$= \frac{9.3 + 7.7 + 8.6 + 2.5 + 6.9 + 10 + 4.7}{7}$$
$$= \frac{49.7}{7} = 7.1$$

7. If mean of 7, 9, x, 13, 6 is 8, then

Mean =
$$\frac{7+9+x+13+6}{5}$$
$$8 = \frac{35+x}{5}$$
or
$$40 = 35+x$$
or
$$x = 40-35=5$$
∴ Value of x is x = 5.

8. Mean of 12 numbers = 16

$$\frac{x_1 + x_2 + \dots + x_{12}}{12} = 16$$
$$x_1 + x_2 + \dots + x_{12} = 12 \times 16$$
$$x_1 + x_2 + \dots + x_{12} = 192$$

If each number is multiplied by 5, then

Mean =
$$\frac{5 \times (x_1 + x_2 + \dots + x_n)}{12} = \frac{5 \times 192}{12} = 80$$

So, the new mean is 80.

9. The first 5 multiples of 7 are 7,14,21,28 and 35

Mean =
$$\frac{7+14+21+28+35}{5} = \frac{105}{5} = 21$$

If each multiple is divided by 7, then

new mean =
$$\frac{21}{7}$$
 = 3

10. Prepare a frequency table for the following data :

x	Tally marks	Frequency
7	11	2
8	111	3
9	1++1	6
10	I I I I I I I I I I I I I I I I I I I	6
11	I	1
12		2
	Total	20

weight (in kg) (<i>x</i>)	frequency (f)	f imes x
50	7	350
55	3	165
58	4	232
60	2	120
62	4	248
	$\Sigma f = 20$	$\sum fx = 1115$

11. The following table shows the weights (in kg) of 20 students of a class :

 $\therefore \qquad \text{Mean} = \frac{\sum fx}{\sum f}$ $= \frac{1115}{20} = 55.75$

12. Find the mean of the following distribution :

x	f	f imes x
4	5	20
6	10	60
9	10	90
10	7	70
15	8	120
	$\Sigma f = 40$	$\sum fx = 360$

$$\therefore \qquad \text{Mean} = \frac{\sum fx}{\sum f} = \frac{360}{40} = 9$$

Exercise 14.2

1. We have the data, 96,98,100,110,110,115,120,121,123,123 $n = 10 \,({\rm even})$

Median = ?

Ascending order : 96,98,100,110,110,115,120,121,123,123

$$\therefore \quad \text{Median} = \frac{\left(\frac{n}{2}\right)^{\text{th}} \text{term} + \left(\frac{n}{2} + 1\right)^{\text{th}} \text{term}}{2}$$
$$= \frac{\left(\frac{10}{2}\right)^{\text{th}} \text{term} + \left(\frac{10}{2} + 1\right)^{\text{th}} \text{term}}{2}$$
$$= \frac{5^{\text{th}} \text{term} + 6^{\text{th}} \text{term}}{2}$$

$$=\frac{110+115}{2}=\frac{225}{2}=112.5$$

- 2. Find the mean, median and mode of the following :
 - (i) 15, 19, 15, 14, 15, 16, 14, 21, 15

Ascending order : 14,14,15,15,15,15,16,19,21 (*n* = 9 odd)

$$= \frac{\text{Sum of all observations}}{\text{Total no. of observations}}$$
$$= \frac{14 + 14 + 15 + 15 + 15 + 15 + 16 + 19 + 21}{9}$$
$$= \frac{144}{9} = 16$$
Median = $\left(\frac{n+1}{2}\right)^{\text{th}}$ term = $\left(\frac{9+1}{2}\right)^{\text{th}}$ term
= $\left(\frac{10}{2}\right)^{\text{th}}$ term
= 5^{th} term
= 15

Mode = 15 (because 15 occurs maximum frequency) i.e. 4 times

(ii) 5,6,7,7,7,9,9,9,12,10

Ascending order : 5, 6, 7, 7, 7, 9, 9, 9, 10, 12(*n* = 10 even)

$$Mean = \frac{Sum \text{ of all observations}}{Total no. \text{ of observations}}$$
$$= \frac{5+6+7+7+7+9+9+9+10+12}{10}$$
$$= \frac{81}{10} = 8.1$$
$$Median = \frac{\left(\frac{n}{2}\right)^{\text{th}} \text{ term } + \left(\frac{n}{2}+1\right)^{\text{th}} \text{ term}}{2}$$
$$= \frac{\left(\frac{10}{2}\right)^{\text{th}} \text{ term } + \left(\frac{10}{2}+1\right)^{\text{th}} \text{ term}}{2}$$
$$= \frac{5^{\text{th}} \text{ term } + 6^{\text{th}} \text{ term}}{2} = \frac{7+9}{2}$$
$$= \frac{16}{2} = 8$$

Mode = 7 and 9 (because 7 and 9 both occur equal no. of maximum frequency i.e. 3 times)

3. The first 10 even numbers

$$2, 4, 6, 8, 10, 12, 14, 16, 18, 20 \ (n = 10 \text{ even})$$
$$Median = \frac{\left(\frac{n}{2}\right)^{\text{th}} \text{term} + \left(\frac{n}{2} + 1\right)^{\text{th}} \text{term}}{2}$$
$$= \frac{\left(\frac{10}{2}\right)^{\text{th}} \text{term} + \left(\frac{10}{2} + 1\right)^{\text{th}} \text{term}}{2}$$
$$= \frac{5^{\text{th}} \text{term} + 6^{\text{th}} \text{term}}{2}$$
$$= \frac{10 + 12}{2} = \frac{22}{2} = 11$$

4. The marks of 15 students are 27,15,30,45,49,48,15,16,20,35,18,28,34,49,50 Ascending order : 15,15,16,18,20,27,28,30,34,35,45,48,49,49,50 (*n* = 15 odd)

Median =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term
= $\left(\frac{15+1}{2}\right)^{\text{th}}$ term = $\left(\frac{16}{2}\right)^{\text{th}}$ term
= 8^{th} term
= 30

5. Numbers lying between 30 and 60 which are divisible by 6 are

$$36, 42, 48, 54 \qquad (n = 4 \text{ even})$$

$$\text{Median} = \frac{\left(\frac{n}{2}\right)^{\text{th}} \text{term} + \left(\frac{n}{2} + 1\right)^{\text{th}} \text{term}}{2}$$

$$= \frac{\left(\frac{4}{2}\right)^{\text{th}} \text{term} + \left(\frac{4}{2} + 1\right)^{\text{th}} \text{term}}{2}$$

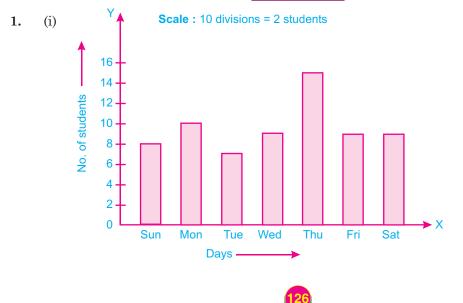
$$= \frac{2^{\text{th}} \text{term} + 3^{\text{rd}} \text{term}}{2}$$

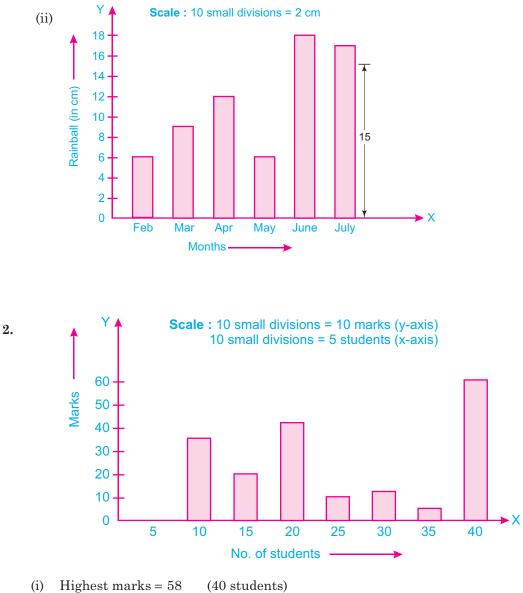
$$= \frac{42 + 48}{2} = \frac{90}{2} = 45$$

- 6. Find the mode of the following frequency distribution :
 - (i) From the given frequency distribution,
 - Mode = 43 (because it has maximum frequency)
 - (ii) Mode = 51 (because it has maximum frequency)
- 7. Weight (kg) of 11 students are 42, 52, 48, 52, 55, 58, 53, 54, 46, 49, 57 (*n* = 11 odd) Ascending order : 42, 46, 48, 49, 52, 52, 53, 54, 55, 57, 58

Median =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term
= $\left(\frac{11+1}{2}\right)^{\text{th}}$ term
= $\left(\frac{12}{2}\right)^{\text{th}}$ term = 6th term
= 52

If a student of 58 kg left the school and a new student of 68 kg joined, then, we have 42, 46, 48, 49, 52, 52, 53, 54, 55, 57, 68

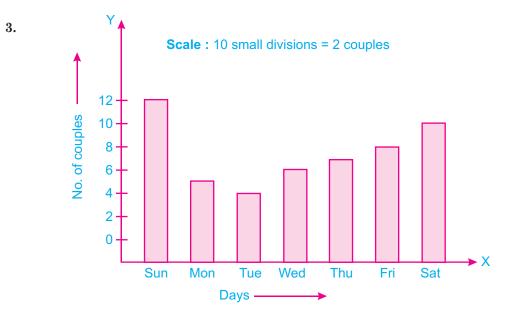

$$\therefore \qquad \text{New Median} = \left(\frac{n+1}{2}\right)^{\text{th}} \text{term}$$
$$= \left(\frac{11+1}{2}\right)^{\text{th}} \text{term} = \left(\frac{12}{2}\right)^{\text{th}} \text{term}$$
$$= 6^{\text{th}} \text{term}$$
$$= 52$$

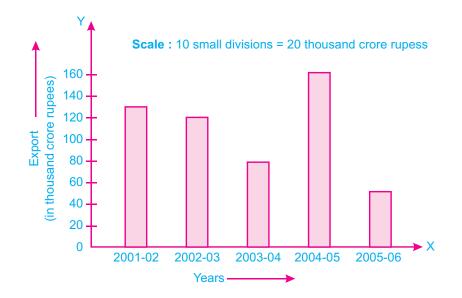

8. The marks of 15 students are 38, 42, 35, 37, 45, 50, 32, 43, 43, 40, 36, 38, 43, 48, 47 (*n* = 15) odd

Ascending order : 32, 35, 36, 37, 38, 38, 40, 42, 43, 43, 43, 45, 47, 48, 50

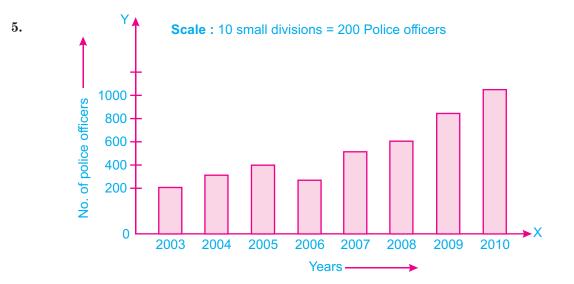
Medium marks =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term
= $\left(\frac{15+1}{2}\right)^{\text{th}}$ term = $\left(\frac{16}{2}\right)^{\text{th}}$ term
= 8^{th} term
= 42

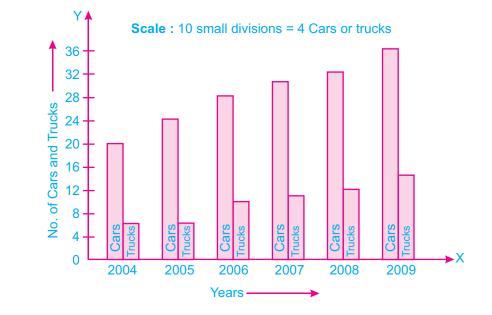
Exercise 14.3

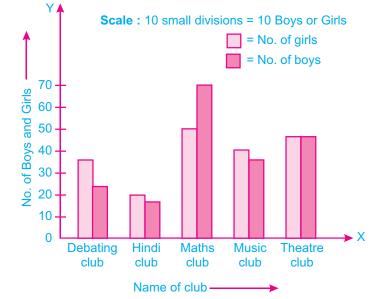


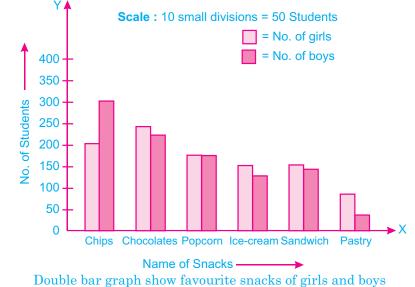


(1) Highest marks = 58 (40 students)
 Money required = ₹ 40×10


(ii) Lowest marks = 5(35 students)No. of problems = 35×15


$$= 525$$





- (i) The bar graph represents the no. of girls and boys who are members of various clubs in a school.
- (ii) Five clubs are being considered.
- (iii) Theatre club has equal no. of boys and girls.
- (iv) Maths club has the maximum no. of students.
- (v) Maths club is the most popular club among the boys.

- (i) This graph shows the comparison of favourite snacks.
- (ii) Pastry
- (iii) Popcorn

Exercise 14.4

- 1. We have vowels = a, e, i, o, uTotal no. of alphabets = 26 $\frac{5}{26}$ =
- 2. No. of red balls = 3No. of black balls = 4No. of white balls = 2

Total no. of balls = 9

Probability of drawing a red ball

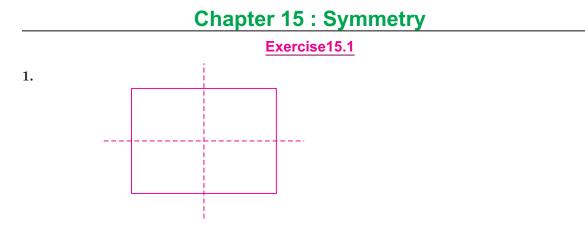
$$= \frac{\text{Possible outcomes}}{\text{Total no. of outcomes}}$$
$$= \frac{3}{9} = \frac{1}{3}$$

- The sun will rise from the west tomorrow. 3. (i)
 - (ii) On throwing a die, 9 will be obtained.
- 4. On throwing a die, we have total outcomes

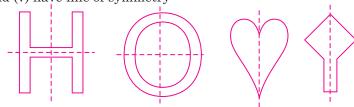
= 1, 2, 3, 4, 5, 6 (6)

Number less than 5 = 1, 2, 3, 4 (4)

Probability of getting a number less than $5 = \frac{\text{Possible outcomes}}{----}$

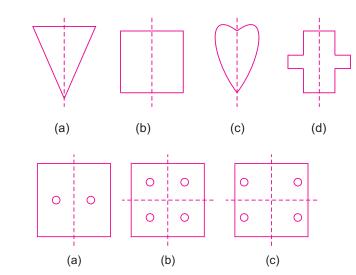

$$=\frac{4}{6}=\frac{2}{3}$$

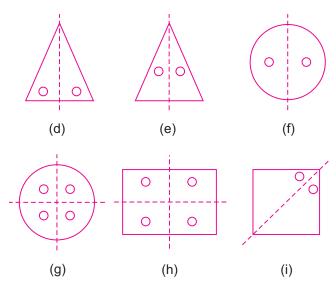
The numbers from 1 to 20 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. 5. Total numbers = 20


Prime numbers = 2, 3, 5, 7, 11, 13, 17, 19 (8)

Probability of choosing a number = $\frac{\text{Possible outcomes}}{\text{Total no. of outcomes}}$ $=\frac{8}{20}=\frac{2}{5}$

- Probability that which team will start the game on tossing a coin = $\frac{1}{2}$ (Head or tail) **6**.
- Write whether the following is certain to happen, can happen but not certain, impossible : 7.
 - (i) can happen but not certain
 - (ii) impossible
 - (iii) impossible
 - (iv) can happen but not certain
 - (v) certain to happen




Which of the following has line of symmetry?
 (ii), (iii), (iv) and (v) have line of symmetry

- 3. Parallelogram and scalene triangle
- 4. Which letters of the English alphabet have reflectional symmetry about :
 (i) A, H, I, M, O, T, U, V, W, X, Y
 (ii) B, C, D, E, H, I, O, X
 - (iii) H, I, O, X

5.

7. Do yourself.

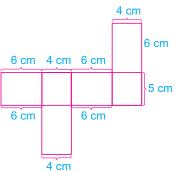
Exercise 15.2

- 1. (a) No (b) No (c) Yes (d) Yes (e) No
- **2.** (a) 4 (b) 2 (c) 2 (d) 6 (e) 2 (f) 3 (g) 5 (h) 6 (i) 2 (j) 2
- **3.** Write the no. of lines of symmetry and order of rotational symmetry in the following :

Alphabet	No. of lines of symmetry	Order of Rotational Symmetry
С	1	1
D	1	1
X	2	4
Н	2	2

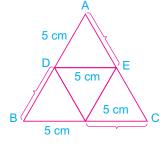
- 4. An isosceles triangle.
- **5.** Complete the following table :

No.	Shape	Order of Rotational Symmetry	Angle of Rotation
a.	Trapezium	1	360°
b.	Rhombus	2	180°
с.	Parallelogram	2	180°
d.	Equilateral triangle	3	120°
e.	Regular pentagon	5	72°
f.	Regular hexagon	6	60°
g.	Isosceles right triangle	1	360°
h.	Semicircle	1	360°


Fill in the blanks: **6**.

Alphab et Letters	Presence of Line of Symmetry	Number of Lines of Symmetry	Rotational Symmetry of order more than 1	Order of Rotational Symmetry
Z	No	0	Yes	2
Н	Yes	2	Yes	2
0	Yes	2	Yes	2
S	No	0	Yes	2
Е	Yes	1	No	1
N	No	0	Yes	2
С	Yes	1	No	1
Ι	Yes	2	Yes	2

Chapter 16 : Visualising Solid Shapes


Exercise 16.1

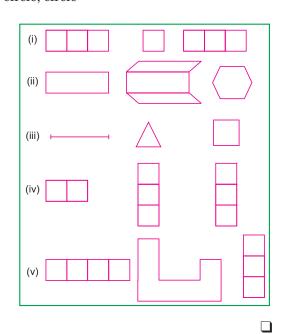
- (a) Cuboid (b) Cylinder (c) Sphere (d) Cube (e) Pyramid (f) Cone 1.
- 2. Fill in the blanks :
 - (a) 6, 12 and 8 (b) edge (c) face (d) plane, curved
- Draw a solid shape that has two flat faces and one curved surface. 3. The required solid shape is a cylinder.
- Write down the no. of edges in each of the following solids : **4**.
 - (i) Cube $\rightarrow 12$ edges (iii) Cylinder $\rightarrow 2$ curved edges
- (ii) Sphere \rightarrow No edge (iv) $Cone \rightarrow No edge$

- Which solid shape can be made from each net shown below : 6. (a) Cube (b) Square Pyramid (c) Cuboid
- 7. Match the nets with appropriate solids :

$$\begin{array}{ccc} a \rightarrow (iii) & b \rightarrow (ii) & c \rightarrow (v) & d \rightarrow (vi) & e \rightarrow (viii) \\ f \rightarrow (i) & g \rightarrow (vii) & h \rightarrow (ix) & i \rightarrow (iv) \end{array}$$

Exercose 16.2

1. Do yourself 2. Do yourself


3. Do yourself **Exercise 16.3**

4. Do yourself

1. (a) 9 Cubes (b) 16 Cubes (c) 29 Cubes

2.	(a) (b)	(i) front (i) side	(ii) side (ii) top	(iii) top (iii) front
	(c)	(i) front	(ii) side	(iii) top
	(d)	(i) top	(ii) front	(iii) side
	(e)	(i) top	(ii) front	(iii) side
	(f)	(i) front	(ii) side	(iii) top
	(g)	(i) side	(ii) top	(iii) front
	(h)	(i) side	(ii) front	(iii) top
	(i)	(i) side	(ii) front	(iii) top
3.	(a) rectangle, rectangle			(b) circle, circle

- (c) isosceles triangle, circle
 - (d) triangle, circle
- **4**.

5. (a) Almirah (b) die (c) ice-cream cone.